

NATIONAL LIBRARY OF MEDICINE

Recommendations on NLM
Digital Repository Software

Prepared by the
NLM Digital Repository Evaluation and Selection Working Group

Submitted December 2, 2008

Contents

1. Executive Summary .. 1

2. Introduction and Working Guidelines .. 2
2.1. Introduction.. 2
2.2. Working Guidelines ... 2

3. Project Methodology and Initial Software Evaluation Results ... 4
3.1 Project Timeline .. 4
3.2. Project Start: Preliminary Repository List ... 4
3.3. Qualitative Evaluation of 10 Systems/Software .. 4
3.4. In-depth Testing of 3 Systems/Software .. 7

4. Final Software Evaluation Results.. 9
4.1 Summary of Hands-on Evaluation .. 9

5. Recommendations ... 17
5.1. Recommendation to use Fedora and Conduct a Phase 1 Pilot ... 17
5.2. Phase 1 Pilot Recommendations .. 18
5.3. Phase 1 Pilot Resources Needed .. 19
5.4. Pilot Collections... 21

Appendix A - Master Evaluation Criteria Used for Qualitative Evaluation of Initial 10 Systems
... 23

Appendix B - Results of Qualitative Evaluation of Initial 10 Systems .. 25

Appendix C – DSpace Testing Results ... 27

Appendix D – DigiTool Testing Results .. 41

Appendix E – Fedora Testing Results .. 53

1. Executive Summary
The Digital Repository Evaluation and Selection Working Group recommends that NLM select
Fedora as the core system for the NLM digital repository. Work should begin now on a pilot
using four identified collections from NLM and the NIH Library. Most of these collections
already have metadata and the NLM collections have associated files for loading into a
repository.

The Working Group evaluated many options for repository software, both open source and
commercial systems, based on the functional requirements that had been delineated by the earlier
Digital Repository Working Group. The initial list of 10 potential systems/software was
eventually whittled down to 3 top possibilities: two open source systems, DSpace and Fedora,
and DigiTool, an Ex Libris product. The Working Group then installed each of these systems on
a test server for extensive hands on testing. Each system was assigned a numeric rating based on
how well it met the previously defined NLM functional requirements.

While none of the systems met all of NLM's requirements, Fedora (with the addition of a front
end tool, Fez) scored the highest and has a strong technology roadmap that is aggressively
advancing scalability, integration, interoperability, and semantic capabilities. The consensus
opinion is that Fedora has an excellent underlying data model that gives NLM the flexibility to
handle its near and long-term goals for acquisition and management of digital material.

Fedora is a low-risk choice because it is open-source software, so there are no software license
fees, and it will provide NLM a good opportunity to gain experience in working with open
source software. It is already being used by leading institutions that have digital project goals
similar to NLM's, and these institutions are an active development community who can provide
NLM with valuable advice and assistance. Digital assets ingested into Fedora can be easily
exported, if NLM were to decide to take a different direction in the future.

Implementing an NLM digital repository will require a significant staffing investment for the
Office of Computer and Communications Systems (OCCS) and Library Operations (LO). This
effort should be considered a new NLM service, and staffing levels will need to be increased in
some areas to support it. Fedora will require considerable customization. The pilot project will
entail workflow development and selection of administrative and front end software tools which
would be utilized with Fedora.

The environment regarding repositories and long term digital preservation is still very volatile.
All three systems investigated by NLM have new versions being released in the next 12 months.
In particular, Ex Libris is developing a new commercial tool that holds some promise, but will
not be fully available until late 2009. The Working Group believes NLM must go forward now
in implementing a repository; the practical experience gained from the recent testing and a pilot
implementation would continue to serve NLM with any later efforts. After the pilot is completed,
NLM can re-evaluate both Fedora and the repository software landscape.

1

2. Introduction and Working Guidelines

2.1. Introduction

In order to fulfill the Library's mandate to collect, preserve and make accessible the scholarly and
professional literature in the biomedical sciences, irrespective of format, the Library has deemed
it essential to develop a robust infrastructure to manage a large amount of material in a variety of
digital formats. A number of Library Operations program areas are in need of such a digital
repository to support their existing digital collections and to expand the ability to manage a
growing amount of digitized and born-digital resources.

In May 2007, the Associate Director for Library Operations approved the creation of the Digital
Repository Evaluation and Selection Working Group (DRESWG) to evaluate commercial
systems and open source software and select one (or combination of systems/software) for use as
an NLM digital repository. The group commenced its work on June 12, 2007 and concluded its
work December 2, 2008. Working Group members were: Diane Boehr (TSD/CAT), Brooke Dine
(PSD/RWS), John Doyle (TSD/OC), Laurie Duquette (HMD/OC), Jenny Heiland (PSD/RWS),
Felix Kong (PSD/PCM), Kathy Kwan (NCBI), Edward Luczak (OCCS), Jennifer Marill
(TSD/OC), chair, Michael North (HMD/RBEM), Deborah Ozga (NIH Library) and John Rees
(HMD/IA). Doron Shalvi (OCCS) joined the group in October 2007 to assist in the set up and
testing of software.

The group's work followed that of the Digital Repository Working Group, which created
functional requirements and identified key policy issues for an NLM digital repository to aid in
building NLM's collection in the digital environment.

The methodology and results of the software testing are detailed in Sections 3-4 of this report.
Section 5 provides the Working Group's recommendations for software selection and first steps
needed to begin building the NLM digital repository.

2.2. Working Guidelines

2.2.1. Goals and Scope of the NLM Digital Repository

Institutional Resource
The NLM digital repository will be a resource that will enable NLM's Library Operations to
preserve and provide long-term access to digital objects in the Library's collections.

Contents
The NLM digital repository will contain a wide variety of digital objects, including manuscripts,
pamphlets, monographs, images, movies, audio, and other items. The repository will include
digitized representations of physical items, as well as born digital objects. NLM's PubMed
Central will continue to manage and preserve the biomedical and life sciences journal literature.
NIH's CIT will continue to manage and preserve HHS/NIH videocasts.

2

Future Growth
The NLM digital repository should provide a platform and flexible development environment
that will enable NLM to explore and implement innovative digital projects and user services
utilizing the Library's digital objects and collections. For example, NLM could consider utilizing
the repository as a publishing platform, a scientific e-learning/e-research tool, or to selectively
showcase NLM collections in a very rich online presentation.

2.2.2. Resources

OCCS
Staff will provide system architecture and software development resources to assist in the
implementation and maintenance of the NLM digital repository.

Library Operations
Staff will define the repository requirements and capabilities, and manage the lifecycle of NLM
digital content.

3

3. Project Methodology and Initial Software Evaluation
Results

3.1 Project Timeline

The Working Group held its kick-off meeting June 12, 2007 and completed all work by
December 2, 2008.

• Phase 1: Completed September 25, 2007. A qualitative evaluation was conducted of 10
systems, and three were selected for in-depth testing.

• Phase 2: Completed October 22, 2007. A test plan was developed and a wide range of
content types was selected to be used for testing.

• Phase 3: Completed October 13, 2008. Three systems were installed at NLM and hands-
on testing and scoring of each was performed. On average, each system required 85
testing days or just over four months from start of installation to completion of scoring.

• Phase 4: Completed December 2, 2008. The final report was completed and submitted.

3.2. Project Start: Preliminary Repository List

Based on the work of the previous NLM Digital Repository Working Group, the team conducted
initial investigations to construct a list of ten potential systems/software for qualitative
evaluation. The group also identified various content and format types to be used during the in-
depth testing phase.

3.3. Qualitative Evaluation of 10 Systems/Software

The Working Group conducted a qualitative evaluation of the 10 systems, by rating each system
using a set of Master Evaluation Criteria established by the Working Group (see Appendix A).
Members reviewed Web sites and documentation, and talked to vendors and users to
qualitatively rate each system. Each system was given a rating of 0 to 3 for each criterion, with 3
being the highest rating. Advantages and risks were also identified for each system.

The Working Group was divided into four subgroups, and each subgroup evaluated two or three
of the 10 systems. Each subgroup presented their research findings and initial ratings to the full
Working Group. The basis for each rating was discussed, and an effort was made to ensure that
the criteria were evaluated consistently across all 10 tools. The subgroups finalized their ratings
to reflect input received from discussions with the full Working Group.

All 10 systems were ranked, and three top contenders were identified (see Appendix B).
DigiTool, DSpace, and Fedora were selected for further consideration and in-depth testing.
Below are highlights of the evaluation of the 10 systems.

ArchivalWare

• Developed by: PTFS (commercial).

4

• Advantages:
o Strong search capabilities.

• Risks:
o Small user population.
o Reliability and development path of vendor unknown.

CONTENTdm

• Developed by: University of Washington and acquired by OCLC in 2006 (commercial).
• Advantages:

o Good scalability.
• Risks:

o No interaction with third party systems.
o Data stored in proprietary text-based database and does not accommodate Oracle.
o Development path of vendor unknown.

DAITSS

• Developed by: Florida Center for Library Automation (FCLA) (open source) and
released under the GNU GPL license as a digital repository system for 11 public
universities.

• Advantages:
o Richest preservation functionality.

• Risks:
o Back-end/archive system.
o Must use DAITSS in conjunction with other repository or access system.
o Planned re-architecture over next 2 years.
o Limited use and support; further development dependent on FCLA (and FL state

legislature).

DigiTool

• Developed by: Ex Libris (commercial) as an enterprise solution for the management,
preservation, and presentation of digital assets in libraries and academic environments.

• Advantages:
o "Out-of-the-box" solution with known vendor support.
o Provides good overall functionality.
o Has ability to integrate and interact with other NLM systems.
o Scalability and flexibility may be issues.

• Risks:
o NLM may be too dependent on one commercial vendor for its library systems.

5

DSpace

• Developed by: MIT Libraries and HP Labs (open source) as one of the first open source
platforms created for the storage, management, and distribution of collections in digital
format.

• Advantages:
o "Out-of-the-box" open source solution.
o Provides some functionality across all functional requirements.
o Community is mature and supportive.

• Risks:
o Planned re-architecture over next year.
o Current version's native use of Dublin Core metadata is somewhat limiting.

EPrints

• The Subgroup decided to discontinue the evaluation due to EPrints (open source) lack of
preservation capabilities and its ability to only provide a small-scale solution for access to
pre-prints.

Fedora

• Developed by: University of Virginia and Cornell University libraries (open source).
• Advantages:

o Great flexibility to handle complex objects and relationships.
o Fedora Commons received multi-million dollar award to support further

development.
o Community is mature and supportive.

• Risks:
o Complicated system to configure according to NLM research and many users.
o Need additional software for fully functional repository.

Greenstone

• Developed by: Cooperatively by the New Zealand Digital Library Project at the
University of Waikato, UNESCO, and the Human Info NGO (open source).

• Advantages:
o Long history, with many users in the last 10 years.
o Strong documentation with commitment by original creators to develop and

expand.
o Considered "easy" to implement a simple repository out of the box.
o DL Consulting available for more complex requirements.
o Compatible with most NLM requirements.

• Risks:
o Program is being entirely rewritten (C++ to Java) to create Greenstone 3. Delivery

date unknown.

6

o Development community beyond the originators is not as rich as other open
source systems.

o DL Consulting recently awarded grant "to further improve Greenstone's
performance when scaled up to very large collections" -- implies it may not do so
currently.

o Core developers and consultants in New Zealand.

Keystone DLS

• Developed by: Index Data (open source).
• Advantages:

o Some strong functionality.
• Risks:

o Relatively small user population.
o Evaluators felt it should be strongly considered only if top 3 above are found

inadequate.
o No longer actively being developed as of August 2008.

VITAL

• Developed by: VTLS, Inc. (commercial) as a commercial digital repository product that
combines Fedora with additional open source and proprietary software and provides a
quicker start-up than using Fedora alone.

• Advantages:
o Vendor support for Fedora add-ons.

• Risks:
o Vendor-added functionality may be in conflict with open-source nature of Fedora.

3.4. In-depth Testing of 3 Systems/Software

DSpace, DigiTool, and Fedora were selected as the top three systems to be tested and evaluated.
Four subgroups of the Working Group (Access, Metadata and Standards, Preservation and
Workflows, Technical Infrastructure) were formed to evaluate specific aspects of each system.

System testing preparation included:

• Creating a staggered testing schedule to accommodate all three systems.
• Selecting simple and complex objects from the NLM collection lists.
• Identifying additional tools that would be helpful in testing DSpace and Fedora (e.g.

Manakin and Fez).
• Developing test scenarios and plans for all four subgroups based on the functional

requirements.

A Consolidated Digital Repository Test Plan was created based on the requirements enumerated
in the NLM Digital Repository Policies and Functional Requirements Specification. The Test

7

http://www.nlm.nih.gov/digitalrepository/NLM Digital Repository Requirements rev March 2007.pdf�

Plan contains 129 specific tests, and is represented in a spreadsheet. Each test was allocated to
one of the four subgroups, who were tasked to conduct that test on all three systems.

DSpace 1.4.2, DigiTool 3.0, and Fedora 2.2/Fez 2 Release Candidate 1 were installed on NLM
servers for extensive hands-on testing. OCCS conducted demonstrations and tutorials for DSpace
and Fedora, and Ex Libris provided training on DigiTool, so that members could familiarize
themselves with the functionalities of each system. The Consolidated Digital Repository Test
Plan guided the testing and scoring of the three systems. Details of the testing are available in
the next section.

8

4. Final Software Evaluation Results
The Technical Infrastructure, Access, Metadata and Standards, and Preservation and Workflows
subgroups conducted the test plan elements allocated to their subgroup in the Consolidated
Digital Repository Test Plan. Selecting from a capability/functionality scale of 0 to 3 (0=None,
1=Low, 2=Moderate, 3=High), the subgroups assigned scores to each element, indicating the
extent to which the element was successfully demonstrated or documented. Scores were added
up for each subgroup's set of test elements. A cumulative score for each system was calculated
by totaling the four subgroup scores.

The Fedora platform and Fez interface were evaluated as a joint system.

4.1 Summary of Hands-on Evaluation

Subgroup DSpace DigiTool Fedora (w/Fez)

Technical Infrastructure 36 51 49.75
Access 40 66 52.5
Metadata and Standards 16 27.5 40.75
Preservation and Workflows 42 45 56.5
Total Score 134 189.5 199.5

4.1.1. DSpace 1.4.2 Evaluation

See Appendix C for complete testing results.

4.1.1.1. Technical Infrastructure, score=36

• Data model well suited for academic faculty deposit of papers but does not easily
accommodate other materials.

• All bitstreams uniquely identified via handles and stored with checksums.
• Very limited relationships between bitstreams (html document can designate the primary

bitstream, hiding the secondary files that make up a web page).
• Workflow limited to three steps.
• Dublin Core metadata required for ingest. Other metadata can be accepted as a bitstream

but would not be searchable.
• Versioning of objects/bitstreams not supported.
• Some usage and inventory reporting built-in.
• DSpace uses the database to store content organization and metadata, as well as

administrative data (user accounts, authorization, workflow status, etc).

9

4.1.1.2. Access, score=40

• User access controls are moderate, with authorizations logic restricting functions to
admin users or authenticated users.

• Although objects can have text files associated as licenses, there is not application logic
to make use of license data, and no built-in way to facilitate content embargoes/selective
user access.

• Entire collections can be hidden to anonymous users, but metadata remains viewable.
• Audit history written to a cumulative log which must be parsed by scripts into human-

readable formats, and metadata actions are only sparsely logged.
• External automated access to Dublin Core metadata via OAI-PMH.
• Content is searchable by Dublin Core metadata and full text.
• Files are listed in the order they were ingested and cannot be sorted.

4.1.1.3. Metadata and Standards, score=16

• Dublin Core metadata required for ingest.
• Other metadata can be accepted as a bitstream but would not be searchable.
• Metadata validation not possible.
• Exporting of objects as METS files, but METS not currently supported as an ingest

format.

4.1.1.4. Preservation and Workflows, score=42

• Exported data can be re-ingested with a replace function.
• Checksum checker can periodically monitor the bitstreams for integrity.
• No normalization capability.
• No referential integrity checks.
• No tools for file migration.
• Provenance for record updates is lacking.

4.1.1.5. System support issues

• Platform support: DSpace runs on Solaris, Linux, other UNIX, or Windows servers. It
is a Java application, and uses Apache Tomcat, Apache Ant, and other open source Java
tools. DSpace uses a relational database that can be Oracle, PostgreSQL, or MySQL.

• Deployment and maintenance: OCCS personnel installed several copies of DSpace on
Windows computers for initial testing and demonstration. OCCS then installed DSpace
on an NLM Solaris server using an Oracle database for full testing and evaluation.
DSpace is relatively simple to install and build, and has limited but adequate
documentation. DSpace includes user interfaces for public access and repository
administration; however, these interfaces are very plain, and difficult to customize.

10

Installation and usage problems can often be solved by asking for assistance from
members of the DSpace community, by posting a request on the DSpace email list server.

• Development and user organizations: DSpace has a very active user community and
open source development community, with over 400 institutional users worldwide
including NLM LHC for the SPER research project. DSpace was initially developed with
support from MIT and HP. In 2007, the DSpace Foundation was formed to continue
development of the open source software and support its community.

• Future roadmap: Future plans for DSpace are not crystal clear, but there is good
promise for continued development and community support:

o A DSpace 2.0 architecture has been defined that will introduce major
improvements to the tool, and development of these enhancements has already
begun.

o Plans are being made for significant collaboration with the Fedora Commons
community, to address needs and functions that are common to these two tools.
Grant funding for planning joint activities has recently been obtained from the
Andrew W. Mellon Foundation.

4.1.1.6. User Visits/Calls

• University of Michigan (May 14, 2008)

4.1.2. DigiTool 3.0 Evaluation

See Appendix D for complete testing results.

4.1.2.1. Technical Infrastructure, score=51

• Overall, the group was impressed with the broad range of tools and continued to discover
new functionality, although the discovery was difficult at times.

• The ingest process is one example of the difficulty the group experienced: understanding
the use of the legacy Meditor and the web ingest tool and the difference between deposit
and ingest. Ingest workflows seemed overly complex.

• Certain challenges were a result of the NLM environment: the security lockdown, the
Meditor installation, and ActiveX.

• Quite a few tests were conducted. The group was particularly happy with the range of file
types (DigiTool really shines in this area) and areas of metadata handling, especially in
terms of METS.

• Other positive aspects are the automatic format configurations and the support of
relationships between digital entities (parent-child, for example).

• Weak areas include lack of specific support for quality assurance and audit functionality
and the overall system configuration management.

• Standards support is good.

4.1.2.2. Access, score=66

• The group's evaluation considered staff users as well as end user needs and functionality.

11

• Access features in both areas were pretty strong, in terms of granularity of permissions,
access protocols (Z39.50, OAI-PMH, etc.), and the search results display.

• The group would like to see more flexibility in search options, such as relevance ranking,
proximity, and "more like this." Poor browsing features and no leveraging of authority
control. The group recognizes many of these features are available via Primo and through
some customization of Oracle.

• Good faith effort towards Section 508 compliance is well-documented by the vendor.
• Generally, the feeling is that DigiTool very strong in the access area.

4.1.2.3. Metadata and Standards, score=27.5

• Ingest of multiple format types is a feature the group likes.
• The limitation to Dublin Core mapping is a hindrance.
• The group would like to see more information on validation (for example, validation that

a MeSH heading is MeSH).
• Updating and adding metadata fields are easy.
• The group did not see metadata checking for batch files, only individual files.

4.1.2.4. Preservation and Workflows, score=45

• DigiTool has many rich features, especially the use of METS extraction, JPEG 2000
thumbnail creation, and tagging master files in two ways.

• The rollback feature is good.
• Weak areas include the lack of confirmation for ingest and individual rather than batch

ingest.
• The group recognizes that most preservation functionality will be offered with the Ex

Libris Digital Preservation System (DPS), currently in development. Many customers
will continue using DigiTool and have no need for the enhanced preservation
functionality that will be offered by the DPS.

4.1.2.5. System support issues

• Platform support: DigiTool runs on either a Solaris or Linux server, with an embedded
Oracle database. The Meditor administrative client software runs on a desktop PC.

• Deployment and maintenance: Installation was performed by Ex Libris on an NLM
Solaris server; the vendor will not allow the software to be installed by the user
organization. The installation requirements presented no particular difficulties, with the
exception of the Meditor client software which required administrator privilege to install
on user PCs. Parts of the code base are very old, having been migrated from a legacy
COBOL product. Ex Libris provided detailed training on the use of the software, and
was responsive in answering questions.

• Development and user organizations: The DigiTool product development team is
located in Israel, and is accessible via web conference and teleconference. A separate
team at Ex Libris is also developing a new repository product, the Digital Preservation
System. Contacted users reported mixed experiences with DigiTool - a few are happy
(e.g., Boston College), but others were disappointed and abandoned the product (e.g.,

12

University of Maryland, University of Tennessee, and Brandeis University). A small but
active user group exists.

• Future road map: Ex Libris recently indicated to NLM that DigiTool will cease to be an
independent product, and will be reformulated as a module that can be optionally used
with the new Ex Libris Digital Preservation System. These plans have not yet been
publicly announced.

• Security: OCCS conducted a web application security scan of DigiTool using IBM's
AppScan scanning tool, and found 126 high-severity issues and 22 medium-severity
issues. The high-security issues included Cross-Site Scripting vulnerabilities and Blind
SQL Injection vulnerabilities. An additional 229 low-severity issues and information
issues were detected by the scan. Details are provided in the DRESWG Security Scan
Results.

4.1.2.6. User Visits/Calls

• Boston College (May 2, 2008)
• Oak Ridge National Library (May 7, 2008)
• University of Tennessee, Knoxville (email exchange on DigiTool 3 beta testing in 2005;

May 28, 2008)
• Center for Jewish History and The Jewish Theological Seminary (May 30, 2008)

4.1.3. Fedora 2.2/Fez 2 Release Candidate 1 Evaluation

See Appendix E for complete testing results.

4.1.3.1. Technical Infrastructure, score=Fedora: 40.5; Fez: 35.5; Combined Fedora/Fez
maximum: 49.75

• Fedora is very strong in the range of files that can be ingested, metadata requirements,
versioning, relationships, and audit trails.

• Fedora's web services-based interface to repository content makes it easy to integrate
with external tools and custom front-ends.

• Fedora is weak in workflow capabilities. Fez ranges from minimum to adequate in
workflow capabilities.

• Fedora provides good support for standards compliance: SOAP, OAI, Unicode, METS,
PREMIS, etc.

• One question is whether Fedora can catch transmission errors when a file is ingested from
a directory, a function available in SPER. Fedora can compute a checksum and add it to
the SIP, and it will verify checksums, but there appears to be a bug: the checksums
always match. This problem should be fixed in version 3.0.

4.1.3.2. Access, score=Combined Fedora/Fez: 52.5

• Fedora provides great flexibility and granularity re: access controls at the user, collection,
object, datastream and disseminator levels. The downside to this flexibility is that it

13

requires custom policies to be written using a specialized markup - learning curve for the
admin/developer staff.

• Fez also has granular security options, including Active Directory integration. The
Group was not able to successfully test some of the access control logic. A big downside
to the administration of the controls is the need to multi-select values using the Ctrl key,
making it very easy to accidently deselect values which may not even be visible to the
user.

• Fedora includes an OAI-PMH service which can provide the Dublin Core metadata
associated with an object. This service could run (on Fedora) with a Fez implementation
as well.

• Fedora has a very basic default end-user interface but is extremely flexible in its ability to
integrate with third-party front-ends. Fez offers a rich end-user UI including UTF8
character support, controlled keyword searching, and output into RSS. Both systems do
not adequately highlight a preferred version of an object over other versions also made
visible to the end user.

• Full text searching is available with both systems via a third-party indexing plug-in.
• Fedora's disseminator approach offers much flexibility to content delivery, and Fez's

inability to leverage the dissemination is a significant downside to the Fez product.

4.1.3.3. Metadata and Standards, score=Fedora 40.75; Fez 33.75; Combined Fedora/Fez:
40.75

• Most of the ratings assigned were 3s.
• The most difficult aspect of Fedora is determining workflows.
• Fedora conducts all the metadata checks that are needed.
• Fedora is difficult to use, as is DigiTool; Fez is easier.
• Fez uses only schemas, not DTDs.
• Dublin Core, MODS, and so on can be used as long as they are built into the workflow.
• MARC is ingested as a datastream.
• Disseminator architecture and other Fedora data model features should enable NLM to

implement metadata linkage or exchange between Fedora and Voyager.

4.1.3.4. Preservation and Workflows, score=Fedora: 55; Fez: 41.5; Combined Fedora/Fez
maximum: 56.5

• Fedora provides a solid core set of preservation capabilities that can be extended with
companion tools (e.g. JHOVE for technical metadata extraction).

• Fedora/Fez does not create a physical AIP package but generates a FOXML/METS file
that contains metadata and links to all datastreams during ingest.

• Fedora assigns a PID and generates a checksum for each ingested datastream.
• Fez can generate three different .jpg derivatives for each ingested image datastream. The

subgroup was unable to test Fedora's disseminator.
• GSearch (the Fedora Generic Search Service) may be implemented with Fedora to index

all metadata captured in FOXML/METS but style sheets must be written to enable
GSearch functionality.

14

• Fedora allows data to be exported in three different ways: archive, migrate and public
access but Fez has a very limited data export function.

• Fedora/Fez provides ingest confirmation on screen but no summary statistics. The
subgroup was unable to test mail notification functionality because the mail server was
not set up.

• The purge function in Fez does not delete an object from the repository. In Fedora,
purging deletes an object.

• Still have a need for workflows, if not for the software itself than for external business
functions.

4.1.3.5. System support issues

• User interface: Fedora does not include a public web access user interface, so
an external interface must be added. Options include open source tools designed for use
with Fedora such as Fez and Muradora, or custom web pages developed in-house. The
Fez product restricts Fedora's flexibility in some key areas (access controls and content
modeling) and appears to be more tightly integrated into Fedora than other front ends
(which could be swapped out without touching the content or core services). New
versions of the Fez and Muradora tools are expected to be released in the next few
months, and the Fedora Commons organization is now focusing attention on the Fedora
community's need for a flexible user interface approach.

• Search: Fedora includes an optional search component called GSearch that can search
any metadata or text data in the repository. Because of time limitations, only the more
limited default Fedora search component was tested. The full GSearch
component should be implemented with Fedora. Resource Index database for storing
relationships among objects as semantic concepts for querying by discovery tools.

• Platform support: Fedora runs on Solaris, Linux, other Unix, or Windows servers. It is
a Java application, and uses Apache Tomcat, Apache Ant, and other open source Java
tools. Fedora uses a relational database that can be Oracle, MySQL, PostgreSQL,
McKoi, or others.

• Deployment and maintenance: OCCS personnel installed several copies of Fedora on
Windows computers for initial testing and demonstration. OCCS then installed Fedora
on an NLM Solaris server using an Oracle database for full testing and evaluation.
Fedora is easy to install and is accompanied by clear and comprehensive documentation.
An installation script is provided that guides the installation and configuration process.
Fedora 2.2.2 was the production release version of the software when the NLM
evaluation began, and was the version installed for testing. During testing, Fedora 3.0
was released, a significant upgrade with new features and simplified code base. NLM
spoke with several Fedora users, and all plan to upgrade to version 3.0. Fedora 3.0
should be used instead of earlier versions.

• Development and user organizations: Fedora has an active user community, with more
than 100 user institutions listed in the Fedora Commons Community Registry. The first
prototype of Fedora was begun in 1997, and the project was led for several years by
University of Virginia and Cornell University with grant money obtained from the
Andrew W. Mellon Foundation. In 2007, Fedora Commons was incorporated as a non-
profit organization, and received nearly $5 million in grant money from the Gordon and

15

Betty Moore Foundation to continue development of the Fedora software, and to provide
the resources needed to build a strong open source community. Fedora Commons
supports the user and developer community with an active project web site, a wiki, and
several email lists. All source code is managed on SourceForge. The Moore grant funds
a leadership team, chief architect, lead developer, and several software developers.
Several dozen additional developers are actively involved in the community at user
institutions. Fedora is being used by leading institutions that have digital projects goals
similar to NLM's. The users NLM has contacted are enthusiastic and confident in their
choice of Fedora. They are building effective digital collections, and they can provide
valuable advice and lessons-learned to NLM. Fedora is built using technologies that
OCCS is prepared to support, including Java, Tomcat, XML, and web services.

• Future roadmap: The Fedora Commons Technology Roadmap is published on the
Fedora Commons web site, and defines the Fedora vision, goals, priorities, and five
major projects, with detailed development plans and schedules. Some projects are
primarily directed by Fedora Commons, and others are collaborations with other open
source projects.

• Security: OCCS conducted a web application security scan of Fedora using IBM's
AppScan scanning tool, and found 1 high-severity and 1 low-severity issues. The high-
security issue was a Cross-site scripting vulnerability. The remediation for this
vulnerability is to filter out hazardous characters from user input. This issue should be
addressed in consultation with the Fedora Commons community leadership. The
AppScan tool provides detailed information about the vulnerability and the coding
approach needed to correct it. Additional details of the security scan are provided in the
DRESWG Security Scan Results.

4.1.3.6. User Visits/Calls

• University of Maryland (August 7, 2007 Site Visit)
• University of Virginia (Sept 11, 2008)
• Indiana University (Sept 16, 2008)
• Tufts University (Sept 17, 2008)
• Rutgers University (Sept 18, 2008)
• Presentation from Thornton Staples of Fedora Commons (Sept 29, 2008)
• Yale University (Oct 3, 2008)

16

5. Recommendations

5.1. Recommendation to use Fedora and Conduct a Phase 1 Pilot

The Digital Repository Evaluation and Selection Working Group recommends Fedora as the core
system for the NLM digital repository and to start now on a phase 1 pilot to involve real
collections. Fedora's architecture should enable NLM to ingest, manage, and deliver exotic
content as well as the typical digital scans of print originals. It has the potential to encourage
creative approaches to digital library research and development, e-publishing, e-scholarship, and
e-science.

Fedora has been implemented by a number of institutions involved in innovative digital services,
including Indiana University, Rutgers University, Tufts University, the University of Virginia,
the Max Planck Society (eSciDoc), the National Science Foundation (The National Science
Digital Library), the Public Library of Science, and the Inter-University Consortium for Political
and Social Research.

Drawbacks include the extensive customization, training, and support required to implement and
manage the complex architecture. Considerable time also will be invested in developing detailed
workflows for Fedora. These risks, while significant, do not outweigh the system's benefits.

5.1.1 Key reasons for Fedora

• Provides the flexibility that will be needed to handle NLM's near-term and foreseeable
future needs.

• Has a strong technology roadmap that is aggressively advancing scalability, integration,
interoperability, and semantic capabilities.

• Is being used by leading institutions that have digital projects goals similar to NLM's.
• Has an active open source development community that is well-funded with grant money.

Fedora is cutting edge yet bounded by a strong commitment to standards.
• Strongest and most flexible metadata support of all candidates - it is not bound to any

single scheme.
• Hands-on functional testing has demonstrated that Fedora by itself scored well against

NLM functional requirements, and, with the Fez add-on front-end tool, scored higher
than DSpace and DigiTool.

• Fedora is a low-risk choice for NLM at this time:
o Fedora is open source software, so there are no software license fees.
o Other institutions like NLM are building effective digital collections using

Fedora, and they can provide valuable advice and lessons-learned.
o Digital assets ingested into Fedora can be easily exported, if NLM were to decide

to take a different direction in the future.
o Fedora is a good opportunity for NLM to gain experience with open source

software.
o Fedora is developed and maintained using technologies that OCCS can support.

17

5.1.2. Future Actions Needed

After the completion of a pilot, NLM should evaluate its work. Evaluation is a prudent plan to
mitigate any risks associated with using Fedora. The pilot group should also re-evaluate the
repository software landscape as new versions of all the tools examined are coming out over the
next 12 months, including:

• Fedora just released version 3.1 which makes significant improvements in defining the
content model.

• DSpace architecture will undergo major improvements with a new version, DSpace 2.0.

Plans are also being made for significant collaboration between the DSpace and Fedora
communities and NLM should keep abreast of how these plans could support NLM's use of
Fedora.

The pilot group may also want to determine if NLM should conduct a formal test of the Ex Libris
Digital Preservation System (DPS). DPS is an emerging new commercial tool that offers future
promise for digital repository applications:

• DPS is being developed to meet the requirements of the National Library of New Zealand
(NLNZ), which rejected DigiTool.

• Release 1.0 is expected to be generally available by end of 2008/early 2009.
• NLNZ has gone live with DPS and is happy with the results so far.

5.2. Phase 1 Pilot Recommendations

NLM should start with Fedora 3.1, the latest production release version. NLM hasn't
exhaustively tested 3.x but is starting to examine the code and new key features. Other
institutions which the group has spoken with are planning to migrate from 2.x to 3.x.

5.2.1. Companion Tools

• Use of Fedora open source software gives NLM the opportunity to select and incorporate
"best-of-breed" companion tools.

• NLM can replace or add new tools as better alternatives become available.
• Tool awareness, evaluation, and selection will be a part of NLM's repository evolution

process.
• Companion tool investigation needed during phase 1 pilot:

o Administrative interface tools: The pilot group should not commit immediately
to Fez but should investigate alternative administrative interface tools such as
Muradora or the Rutgers Workflow Management System.

o Preservation tools: Determine use of JHOVE and related tools such as DROID
for file identification, verification and characterization.

o Public user interface tools: Research and implement either open source or
commercial page turning or other front end access capabilities and software.

18

5.2.2. Workflows

• The pilot group should make workflow recommendations over time and workflows may
be tied to the collection or type of material.

• Workflows to be initially examined probably include metadata needed for SIPs
(Submission Information Package) and format characterization.

5.2.3. Suggested Phase 1 Pilot Scope and Time Frame

6-8 months:

• Develop a first pilot collection that already has metadata and associated files. Produce a
"quick" success to show progress.

• Manage the content in one secure place.
• Focus on defining the core functions in the areas of: data models, metadata, preservation

and SIP creation.
• Investigate interfaces with Voyager to maximize use of existing metadata.
• Provide an initial public presentation using a simple Web interface.
• Investigate and begin to implement key preservation aspects to ensure master files are

preserved.

8-18 months:

• Implement an additional one or two pilot collections (of the 4 proposed in section 5.4).
• Begin making recommendations on institutional workflows.
• Implement an administrative interface or collaborate with other users to evolve some

open source alternative, or integrate/develop our own.
• Implement one or two unique public access capabilities (e.g., a page turning application).

5.2.4. NLM's Role in the Fedora Open Source Community

• NLM should investigate potential participation in the Fedora Commons community, e.g.,
the Fedora Preservation and Archiving Solution Community group. Participation could
enable NLM to influence future software features. NLM should also investigate potential
partnerships with leading Fedora users, e.g., University of Maryland, University of
Virginia, or others. (These are strategic/management decisions.)

• NLM should consider contributing source code to the Fedora community only after the
pilot phase, if NLM decides to continue its use of Fedora. NLM should become a
participant rather than a "lurker."

• Before NLM shares any code it may want to consult with NIH legal counsel.

5.3. Phase 1 Pilot Resources Needed

The following summarized resources are estimated for the phase 1 pilot. Additional resource
needs may be identified during the pilot and may be dependent on the collection(s) to be
implemented.

19

5.3.1. LO

• .8 FTE Project Manager and Analyst. Develops phase 1 pilot plan including scope,
schedule and deliverables. Tracks changes to requirements and monitors project progress.
Provides technical input and oversight of all major functional areas.

• .5 FTE Metadata Specialist
• 2.1 FTE Analyst
• All the above to perform the following:

o Analyze and develop workflows for various ingest and process models. (Refers to
both single-file and batch mode).

o Determine metadata schema(s) and element requirements for technical and
descriptive metadata.

o Define user community and access permissions. Develop specifications, specify
requirements for interfaces with other internal systems and assist in developing
integration plans for identified tools.

o Develop specifications for management, preservation, and statistical reports
including access methods, file formats, and delivery options.

o Define data requirements including file formats, directory structure and
information package for ingest.

o Develop QA checklists for automatic and manual processes including data
integrity checks and file format identification, validation and characterization.

o Specify automatically generated error/confirmation/summary reports. (Refers to
master, derivative and metadata files). Define derivative requirements.

o Develop preservation plan including master file management, integrity checks,
backup plan, file migration, etc.

• .5 FTE User Interface Analyst. Takes lead in designing staff and public web interfaces,
including search options and viewing capabilities. Insures that usability testing,
performance analysis, and 508 compliance are conducted according to NLM guidelines
and standards. Additional guidelines may need to be developed depending on user needs
for repository collections and formats.

5.3.2. OCCS

• 1 FTE Systems Architect/Analyst/Engineering Project Manager. Responsible for working
with LO on implementation specifications, advising on technical options, tracking
development progress, providing status updates, coordinating implementation efforts
among different OCCS groups, building development team, etc. Performs analysis of
open source and commercial software tools, including discussions with users, community
members, and vendors.

• 1 FTE Software Engineer/Programmer. Responsible for installing, developing and testing
programs and scripts. Provides overview and demonstrates new tools. Implements and
tests integration of new and existing tools.

• .3 FTE Web Developer/User Interface Specialist. Primary responsibility for public
interface design and programming. Works with User Interface Analyst on designing
usable administrative/staff interfaces.

20

• Systems Engineer responsible for server preparation, network setup, system software
configuration, etc.

• Database Administrator responsible for database configuration and administration.

5.4. Pilot Collections

The Working Group recommends the following digital collections as pilots for the repository in
order to gain early implementation experience with many of the key capabilities of the selected
NLM digital repository software. The files and metadata needed for the proposed collections are
already available or can be compiled without significant effort. The Working Group recommends
a variety of collection and file types be selected.

5.4.1. Cholera Monographs

HMD/RBEM and PSD/PCM have already scanned over 400 English language monographs in
the collection relating to cholera dating from 1830 to 1890. HMD has already loaded many of
the files online on a web site called Cholera Online, but the site is not searchable, except as part
of the general NLM web search. Many of the PDFs are too large to download easily without a
high speed connection. LO has high resolution tiff files with high quality technical metadata and
METS/ALTO packages, of which the NLM digital repository should be able to use. Descriptive
metadata for the materials already exists in Voyager. The Working Group would like to see a
page turner installed for easy viewing of the materials in an online book-like format.

5.4.2. Digitized Motion Pictures

HMD has digitized a number of its historical audiovisuals for preservation and access purposes,
and those created by the government are in the public domain. Metadata for these historical films
already exists in Voyager. The Working Group proposes that as a pilot project, LO attempt to
load about ten of these historical audiovisuals into the NLM digital repository. NLM may need to
gain a waiver to post material in the NLM digital repository that are not 508 compliant; in the
case of digitized motion pictures, this would require expensive closed captioning of any films put
into the NLM digital repository.

5.4.3. Image Files from Historical Anatomies on the Web

HMD has selected and digitized over 500 images from important historical anatomical atlases in
the collection and put them onto the web site, Historical Anatomies on the Web. The images are
not searchable, however, by subject, artist, or author. Metadata does not exist for these
individual images, so the Working Group proposes to add about 50 of the images from two of the
most famous atlases (Vesalius' _De Fabrica_ and Albinus' _Tabulae sceletai_) in order to allow
the pilot team to learn how to handle image files and enter metadata into the system.

5.4.4. NIH Institute Annual Reports (jointly with NIH Library)

Each year NIH Institutes and Centers issue annual reports, documents that provide historical
perspective on research activities. Annual reports consist of a list of investigators for each

21

http://www.nlm.nih.gov/exhibition/cholera/�
http://www.nlm.nih.gov/exhibition/historicalanatomies/home.html�
http://www.nlm.nih.gov/exhibition/historicalanatomies/vesalius_home.html�
http://www.nlm.nih.gov/exhibition/historicalanatomies/albinus_home.html�

research project and a project summary. More detail may be provided through individual project
reports, which describe research objectives, methods, major findings, and resultant publications.
In the mid-1990s, digital copies of many of the reports began to appear on Institute and Center
web sites. Since 1998, intramural reports also have been submitted to the NIH Intramural
Database for searching and viewing by NIH staff and the public (see NIDB Resources at
http://intramural.nih.gov/mainpage.html). The NIH Library maintains a collection of older print
NIH annual reports, totaling more than 700 volumes. To fill gaps in digital access, the Library
plans to digitize the annual report collection, beginning with reports issued by the Clinical
Center. The Clinical Center annual reports span thirty-five years, from 1958 to 1993. A pilot
collection of eleven volumes has been selected for digitization and deposit in the NLM digital
repository, covering fiscal years 1981 through 1993.

22

http://intramural.nih.gov/mainpage.html�

Appendix A - Master Evaluation Criteria Used for Qualitative Evaluation
of Initial 10 Systems

NLM Digital Repository Master Evaluation Criteria

Updated August 13, 2007

Purpose
• Provide a decision method to select 3-4 systems for installation and testing at NLM from the initial list of 10

digital repository candidate systems.

Context
• The Digital Repository Evaluation and Selection Working Group (DRESWG) has begun evaluating the initial

list of 10 candidate systems against a list of approximately 175 functional requirements specified in the NLM
Digital Repository Policies and Functional Requirements Specification, March 16, 2007.
− A weighted numerical scoring method is being used to compute a total score for each candidate

system.
• The Functional Requirements score is one of the master evaluation criteria.
• Additional master evaluation criteria address other programmatic factors and risks that should be considered in

the down-selection decision.

Master Evaluation Criteria
• Functionality - Degree of satisfaction of the requirements enumerated in the NLM Digital Repository

Functional Requirements Specification OR
− Evaluation: Numeric score as assessed by the Working Group

• Scalability – Ability for the repository to scale to manage large collections of digital objects.
− Evaluation: 0-3 assessment scale (see below)

• Extensibility – Ability to integrate external tools with the repository to extend the functionality of the
repository, via provided software interfaces (APIs), or by modifying the code-base (open source software).
− Evaluation: 0-3 assessment scale (see below)

• Interoperability – Ability for the repository to interoperate with other repositories (both within NLM and
outside NLM) and with the NLM ILS.
− Evaluation: 0-3 assessment scale (see below)

• Ease of deployment – Simplicity of hardware and software platform requirements; simplicity of installation;
ease of integration with other needed software.
− Evaluation: 0-3 assessment scale (see below)

• System security – How well does the system meet HHS/NIH/NLM security requirements?
− Evaluation: 0-3 assessment scale (see below)

• System performance – How well the system performs overall; response time (accomplished via load testing).
System availability (24x7 both internally and externally?).
− Evaluation: 0-3 assessment scale (see below)

• Physical environment – Ability for multiple instances for offsite recovery; ability to function with the NIH
off-site backup facility (NCCS); ability for components to reside at different physical locations; ability for
development, testing and production environments; capability for disaster recovery.
− Evaluation: 0-3 assessment scale (see below)

• Platform support – Operating system and database requirements. Are these already supported by OCCS? Is
there staff expertise to deal with required infrastructure?
− Preferable: O/S: Solaris 10 (container); Storage: On NetApp via NFS; DB: Oracle; Web: java-

tomcat or other application tier technology (OCCS will evaluate)

23

− Acceptable: O/S: Windows 2003, Linux Red Hat ES; DB: MySQL; Web: (no constraints for now –
OCCS will evaluate)

− Evaluation: 0-3 assessment scale (see below)
• Demonstrated successful deployments – Relative number of satisfied users (organizations).

− Evaluation: 0-3 assessment scale (see below)
• System support – Quality of documentation, and responsiveness of support staff or developer/user

community (open source) to assist with problems.
− Evaluation: 0-3 assessment scale (see below)

• Strength of development community – Reliability and support track record of the company providing the
software; or size, productivity, and cohesion of the open source developer community.
− Evaluation: 0-3 assessment scale (see below)

• Stability of development organization – Viability of the company providing the software; or stability of the
funding sources and organizations developing open source software.
− Evaluation: 0-3 assessment scale (see below)

• Strength of technology roadmap for the future – Technology roadmap that defines a system evolution path
incorporating innovations and “next practices” that are likely to deliver value.
− Evaluation: 0-3 assessment scale (see below)

To be considered only after the functional and technical criteria above are addressed:
• Cost – Expected total cost of software deployment, including initial cost of software, plus cost of software

integration, modifications, and enhancements.
− Evaluation: 0-highest cost 3-lowest cost

Assessment Scale
• 0 – None
• 1 – Low
• 2 – Moderate
• 3 – High

24

Appendix B - Results of Qualitative Evaluation of Initial 10 Systems
Final Systems Evaluation Matrix Last updated: September 25, 2007

Type (open Advantages Risks For further Notes
source, investigation
vendor)

Top
contenders

Fedora Open source Great flexibility to handle complex
objects and relationships.
Fedora Commons received multi-
million dollar award to support

Complicated system to
configure according to our
research and many users.
Need additional software

further development. Community is for fully functional
mature and supportive. repository.

DigiTool (Ex Libris) Vendor “Out-of-the-box” solution with
known vendor support. Provides

Scalability and flexibility
may be issues.

Ingest issues

good overall functionality. Has
ability to integrate and interact with

NLM may be too
dependent on one vendor

other NLM systems. for its library systems.

DSpace Open source “Out-of-the-box” open source
solution. Provides some
functionality across all functional

Planned re-architecture
over next year.
Current version’s native

requirements (7.1-7.6) use of Dublin Core
Community is mature and
supportive.

metadata somewhat
limiting.

Further
evaluation and
discussion
needed

DAITSS Open source Richest preservation functionality Back-end/archive system.
Must use DAITSS in
conjunction with other
repository or access
system.

If selected for testing,
code base needs
examination for
robustness.

Planned re-architecture
over next 2 years.
Limited use and support;
further development
dependent on FCLA (and
FL state legislature).

Greenstone Open source Long history, with many users in
the last 10 years. Strong
documentation with commitment

Program is being entirely
rewritten (C++ to Java) to
create Greenstone 3.

If selected for testing, not
entirely clear whether
Greenstone 3 (in beta) or

by original creators to develop and
expand.
Considered “easy” to implement
(library school students have used
it to create projects) a simple
repository out of the box; DL
Consulting available for more
complex requirements.
Compatible with most NLM

Delivery date unknown.
Development community
beyond the originators is
not as rich as other open-
source systems.
DL Consulting recently
awarded grant “to further
improve Greenstone’s
performance when scaled

Greenstone 2 (robust but going
away) would be best to test with.
Developers claim any system
implemented in Greenstone 2
will be compatible with
Greenstone 3. Should probably
contact Greenstone developers
and/or DL Consulting with this
question if we select it.

requirements. up to very large
collections”—implies it may
not do so currently.
Core developers and
consultants in New
Zealand.

25

Type (open
source,
vendor)

Advantages Risks For further
investigation

Notes

Keystone DLS Open source Some strong functionality. Relatively small user
population.
Evaluators felt it should be
strongly considered only if
top 3 above are found
inadequate.

No further
consideration
needed at this
time

ArchivalWare
(PTFS)

Vendor Strong search capabilities. Small user population.
Reliability and development
path of vendor unknown.

Very low rating across all master
criteria.

CONTENTdm
(OCLC)

Vendor Good scalability. No interaction with third
party systems. Data stored
in proprietary text-based
database and does not
accommodate Oracle.
Development path of
vendor unknown.

Lower ratings across majority of
master criteria.

EPrints Open source Lower ratings across majority of
master criteria.

VITAL (VTLS) Vendor Vendor support for Fedora add-ons Vendor-added functionality
may be in conflict with
open-source nature of
Fedora.

If full evaluation of Fedora is
successful, VITAL may be
considered as an add-on.

26

Appendix C – DSpace Testing Results
Consolidated Digital Repository Test Plan

Last updated: March 4, 2008
Source

Require-
ments

Sub-
group
See

Note 1

 DSpace 1.4.2 Tests

Test ID Test Plan Element Test Procedure and Results Score
(0-3)

Note 2

Not
es

7.1.1 Ingest - Receive Submission T

7.1.1.7 File types - Demonstrate that the system can ingest content in all the file
formats listed as "supported" in Appendix B of the NLM DR Functional
Requirements document (plus MP3 and JPEG2000), specifically: MARC,
PDF, Postscript, AIFF, MPEG audio, WAV, MP3, GIF, JPEG, JPEG2000,
PNG, TIFF, HTML, text, RTF, XML, MPEG.
Demonstrate that the system can ingest the following types of content:
articles, journals, images, monographs, audio files, video files, websites,
numeric data, text files, and databases.
Conduct this test element by ingesting the set of files listed in the Test File
spreadsheet. (The files listed in this spreadsheet contain examples of all the
file formats, and all the content types identified above.)

7.1.1.7
7.1.1.9

T All files can be ingested. It is an
implementation decision as to how
the files/content are structured.

Testing of "primary bit stream" for
HTML files (KK):
Shows primary bit stream file but
hides all other files regardless of how
related to HTML doc. Does not
change original links in HTML doc.

3

7.1.1.1 Manual review - Demonstrate that the system has the capability to require
that submitted content be manually reviewed before it is accepted into the
repository.
Demonstrate that the system maintains submitted content in a staging area
before it is accepted.
Demonstrate that the system notifies a reviewer when new content is ready for
review.
(Also see tests for 7.1.4.1, 7.1.4.2, and 8.1.2.)

7.1.1.1 T Workflow limited to 3 steps, although
this will be generalized in next
release, 1.5.

3

7.1.1.2 Review and acceptance workflow - Demonstrate that the system supports a
workflow for the review and acceptance of submitted content. Demonstrate
that the workflow includes the following functions:
- Receive and track content from producers; YES
- Validate content based on submitter, expected format, file quality,
duplication, and completeness; NO
- Normalize content by converting content into a supported format for final
ingestion into the repository; NO
- Human review of content; YES
- Acceptance or rejection of content or file format. YES

7.1.1.2,
7.1.1.10

T JHOVE or similar needed for file
validation.
Tools/scripts available to parse log
files.

2

27

7.1.1.3 Reason for rejection - Demonstrate that the system records a set of
identifying information or metadata that describes the reason for the rejection
of submitted content. Demonstrate two cases: (1) automatic rejection, and (2)
rejection by a human reviewer.

7.1.1.3 T DSpace doesn't record the reason
for rejection anywhere. The text of
the reason that is manually entered
by a reviewer is sent in an email
back to the submitter, but the reason
is not recorded in the DSpace
database or the log file. The rejected
item is kept as an "Unfinished
Submission" in the submitter's My
DSpace area, but the reason for
rejection is not included with the
item.

0

7.1.1.4 Rejection filter - Demonstrate that the system allows the creation of a filter
that can be used to automatically reject submitted content. (This capability will
eliminate the need for manual review of some submissions and
resubmissions.)

7.1.1.4 T

0 7.1.1.5 Rejection notification - Demonstrate that the system can notify the producer
or donor when submitted content is rejected. Demonstrate two cases: (1)
notification after immediate rejection by an automated process, and (2)
notification after rejection by manual review.

7.1.1.5,
7.1.1.11

T 1 - No
2 - Yes by email

1

(7.1.1.8) Metadata types - Demonstrate that the system can ingest content with
associated metadata in the following formats: all NLM DTDs, Dublin Core,
MARC21, MARCXML, ONIX, MODS, EAD, TEI, PREMIS, METS. (NOTE: This
test is covered by tests 8.1.1, 8.1.8, and 8.1.9)

7.1.1.8,
8.1.1,
8.1.8,
8.1.9

M/T Dublin Core only 1 (M & T)

7.1.1.10 Format conversion - Demonstrate that the system has the capability to
convert the format of a file being ingested to a desired supported format. As a
test case, demonstrate that a WAV file can be converted to MP3 format when
it is ingested. (An external tool may be needed to perform the conversion. If
this is the case, demonstrate that the system can invoke the required external
tool.)

7.1.1.10,
7.1.1.2

T Definitely not a showstopper.
External tool could possibly be used.

0

7.1.1.12 Resubmission - Demonstrate that the system can ingest a SIP that is
resubmitted after an error in the SIP was detected and corrected.
Demonstrate two cases: the resubmission can occur after an error was
detected in (1) the content of the SIP, and (2) the metadata of the SIP.

7.1.1.12 T If an item is rejected by a reviewer,
an email containing the reason for
rejection is sent to the submitter. The
rejected item is kept in the
submitter's My DSpace area as an
"Unfinished Submission." The
submitter can edit the item, correct
any errors, and resubmit it. When
format errors are detected during
batch submission, the error is
reported in the command window
where the batch submission
command is run. The administrator
can manually correct the format
errors, and resubmit the item in
another batch submission. There is
no duplication checking.

2

7.1.1.14 Versions - Demonstrate that the system can store, track, and link multiple
versions of a file.

7.1.1.14 T Planned for version 1.6 or 2.0 0

28

7.1.1.15a Unique identifiers - Demonstrate that the system assigns a unique identifier
to each object ingested. Demonstrate two cases: (1) a unique identifier
assigned to a digital object, which may be comprised of a set of component
files, and (2) a unique identifier assigned to each of the component files of a
digital object.

7.1.1.15a,
7.1.1.15b

T A handle is associated with each
item. Each bitstream is uniquely
identified.

The original Handle ID is retained
during re-ingest and a new Handle
ID is added when exported data are
re-ingested. However, if the “replace”
option is used, the re-ingest will only
replace the files without adding a
new Handle ID.

3

7.1.1.15b Relationships - Demonstrate that the system can represent a parent-child
relationship between content items. Demonstrate two cases: (1) an object
having multiple components (e.g., a document having multiple pages, each in
a separate file), and (2) an object having multiple manifestations (e.g., an
image having both TIFF and JPEG files).

7.1.1.15b T Item=parent; bitstreams=children
Bitstreams can be "bundled," though
this is not apparent to users.
HTML page can be designated as
"primary"

1.5

7.1.1.16 Audit trail - Demonstrate that the system maintains an audit trail of all actions
regarding receiving submissions (SIPs).

7.1.1.16 T Info contained in log file but not
easily usable.

1

7.1.2 Ingest - Quality Assurance T

7.1.2.1 Virus checking - By design analysis, confirm that the system performs
automatic virus checking on submitted content files.

7.1.2.1 T Could be handled by external tool as
part of pre-ingest process

0

7.1.2.2 Transmission errors - Demonstrate that the system uses MD5, CRC,
checksums, or some other bit error detection technique to validate that each
data file submitted is received into the repository staging area without
transmission errors.

7.1.2.2 T MD5 computed and stored with each
bitstream. SPER project added code
to compute own MD5, which is part
of SIP.

1

7.1.2.3 Submission validation - Demonstrate that the system verifies the validity of
submitted content based on the following criteria: submitter; expected file
format; file quality (e.g., actual format of file matches the filename extension,
and content of file is well-formed); duplication (e.g., existence of object in the
repository); completeness of metadata; completeness of file set (e.g., all
expected files are included in the submission).

7.1.2.3 T 0

7.1.2.4 QA UI - Demonstrate that the system allows NLM staff to perform
manual/visual quality assurance on staged SIPs via a user-friendly interface.

7.1.2.4 T

2

7.1.2.5 Reaction to QA errors - Demonstrate that the system can react to specified
QA errors in two ways: (1) request that the producer correct and resubmit the
content, or (2) automatically modify the submission (e.g., converting to a
supported format).

7.1.2.5 T 1 - Rejection email sent back to
submitter.
2 - No automated way

1

7.1.2.6 File/batch accept/reject - Demonstrate that the system enables NLM staff to
accept or reject submitted content (SIPs) at the file or batch level.

7.1.2.6 T File review is manual (one x one).
Batch review is not automated.

1.5

7.1.2.7b Error reports - Demonstrate that the system generates error reports for ingest
quality assurance problems.

7.1.2.7b T The DSpace statistics reports show a
count of the number of item
rejections and rejection notifications.
The reports do not classify reasons
for rejection, and do not include the
text reason entered by the rejecting
reviewer. Successful and
unsuccessful batch ingests are not
included in the statistics reports.

1

7.1.2.8 Adjustable level of manual QC - By design analysis, confirm that the system
has the ability to adjust the level of manual ingest quality control needed,
based on the origin of the file.

7.1.2.8 T

0

29

7.1.2.9 Audit trail - Demonstrate that the system maintains an audit trail of all actions
regarding ingest quality assurance.

7.1.2.9 T The DSpace log records when items
are submitted, approved, and
rejected. Reasons for rejection are
not recorded. Successful and
unsuccessful batch ingests are
logged.

1

7.1.4 Ingest - Generate Descriptive Information / Metadata M

7.1.4.1 Additional metadata - Demonstrate the entry of additional metadata (e.g.
subject headings, names, dates, “curatorial” descriptive metadata - evaluative
information that explains why an object is important, whether it was part of a
larger collection (e.g., an exhibit), etc.).

7.1.4.1 M Rather clunky 2

7.1.4.2 Validate metadata - Demonstrate ability to validate specified metadata
elements.

7.1.4.2 M

0

7.1.4.4 Metadata storage - Demonstrate that metadata is stored in the database in a
manner that conforms to repository reformatting and linked to their
corresponding objects via an identifier.
o Demonstrates that basic descriptive metadata is also stored with the objects
(e.g., unique identifier, title and date stored in the TIFF header) so that the
objects can still be identified in the event that information in the database is
corrupted.
o See Appendix D for examples of TIFF header metadata requirements.
(Use of external tool probable)

7.1.4.4 M First bullet - 2; second bullet - 2 2

7.1.4.5 Required descriptive elements - Demonstrate the ability to recognize
required descriptive elements.

7.1.4.5 M would need an external tool; could
write a program to do this

1

7.1.4.7 Audit trail - Demonstrate the creation of an audit trail of all actions. 7.1.4.7 M

1

7.1.3 Ingest - Generate AIP Note 3 P

7.1.5 Ingest - Coordinate Updates Note 3 P

7.2.1 Archival Storage - Receive Data Note 3 P

7.2.2 Archival Storage - Manage Storage Hierarchy Note 3 P

7.2.3 Archival Storage - Replace Media Note 3 P

7.2.4 Archival Storage - Error Checking and Disaster Recovery Note 3 P

7.2.5 Archival Storage - Provide Data Note 3 P

7.3.1 Data Management - Administer Database Note 3 P

7.3.2 Data Management - Administer Perform Queries Note 3 P

7.3.3 Data Management - Generate Report Note 3 P

7.3.4 Data Management - Receive Database Updates Note 3 P

7.4 Administration Note 3 P

P1 - Generate AIP P

P1-1 Generate AIP - Demonstrate the generation of AIPs from ingested SIPs that
do not need normalization.

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P Yes 2

30

P1-2 Generate AIP with normalization - Demonstrate the generation of AIPs from
ingested SIPs that need normalization - Transform an unsupported format to
an accepted format (See Appendix B).

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P NO: No normalization and
submission auditing (check the title
field only).

0

P1-3 Derivative files - Demonstrate the generation of AIPs that consist of master
files and derivatives.

7.1.3.6 P Yes 1

P1-4 Master files - Demonstrate the generation of AIPs that consist of master files
only.

7.1.3.6 P Yes 1

P1-5 Store AIP in archival storage - Demonstrate the ability to transfer AIPs to
Archive Storage.

7.1.5.1,
7.2.1.1,
7.2.1.2

P Yes 2

P1-6 Store metadata in DB - Demonstrate the ability to generate and transfer
Descriptive Information (metadata) to Data Management Database.

7.1.5.2,
7.3.4.1

P Yes 2

P1-7 Link metadata and objects - Demonstrate the ability to store identification
information in the Data Management database and link digital objects in the
Archive Storage.

7.1.5.4 P Yes 2

P1-8 Send confirmation - Demonstrate the ability to automatically send
confirmation to ingest and/or receiver when AIP and metadata transfers are
completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P Yes for manual ingest. Batch ingest
has only on-screen confirmation and
can optionally invoke workflow
process. Batch ingest provides on-
screen confirmation of item ingest;
data shown includes all metadata
values and bitstream file names. (Ed
verified)

2

P1-9 Send statistical reports - Demonstrate the ability to automatically send
statistical reports to ingest and/or receivers when AIP and metadata transfers
are completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P No for manual ingest. The existing
DSpace statistics reports do not
include counts for items ingested via
batch ingest. (Ed verified.)

0

P1-10 Send error reports - Demonstrate the ability to automatically send error
reports to ingest and/or receivers when AIP and/or metadata transfers fail.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P No for manual ingest. Error reports
are not sent for batch ingest. (Ed
verified.)

0

P2 - Administer Archival Storage & Database P

P2-1 Monitor transfer integrity - Demonstrate the built-in function to automatically
monitor and report if any AIPs and metadata are altered or corrupted during
data transfer and media change (refresh or replace).

7.2.2.1,
7.2.3.2,
7.2.4.1

P Yes. The DSpace Checksum
Checker verifies that checksum of
every bitstream file in the repository
has not changed. The Checker can
be configured to run regularly using
the Unix cron. The Checker creates
a log file that contains the results of
the checksum checker run.

2

P2-2 Check data/referential integrity - Demonstrate the built-in function to
perform routine and special referential and data integrity checks (CRC or
checksums) on files in the Archive Storage and Data Management Database.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P Data integrity checks (checksum) for
data transfer but not for version
upgrades and format migration
(7.4.4.). Also no referential integrity
checks (7.3.1.2).

1

P2-3 Routine configuration for data/referential integrity - Demonstrate the
ability to allow for routine configuration.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P See comments in P2-2. 1

31

P2-4 Disaster recovery - Demonstrate the ability to allow for disaster recovery
including data backup, off-site data storage, and data recovery.

7.2.4.3 P Yes. Can be recovered from backup
or exported data)

2

P2-5 User views - Demonstrate the ability to allow for customized user views of the
contents of the storage (create, maintain, and access).

7.3.1.4 P Yes with external tools. 2

P2-6 System CM - Demonstrate the ability to allow for configuration management
of the system hardware and software.

7.4.2 P Yes 2

P2-7 Database CM - Demonstrate the ability to allow for configuration management
of the Data Management Database such as table, schema definitions, etc.

7.3.1.3 P Yes 2

P2-8 Delete AIPs - Demonstrate the ability to allow the authorized staff to delete
AIPs from the repository including: removing the digital object's files and
retaining associated metadata, or removing both the files and metadata.

7.4.3.4 P Yes 2

P2-9 Coordinate AIP removal - Demonstrate the ability to generate an alert and
coordinate the removal of an AIP with maintenance of metadata held in other
systems.

7.4.3.5 P No 0

P2-10 File migrations - Demonstrate the ability to allow the authorized staff to
schedule and perform file migrations or migration on request for batched and
individual files by authorized staff.

7.4.3.6 P No 0

P2-11 Request DIPs for update - Demonstrate the ability to allow the authorized
staff to request DIPs for file migrations and data updates.

7.3.4.1,
7.3.4.2,
7.3.4.3,
7.4.3.1,
7.4.3.2,
7.4.6.2

P Yes. DIPs can be requested and
exported. However, it provides no
tools for file migration and data
updates.

1

P2-12 Re-ingest updated DIPs - Demonstrate the ability to allow the authorized
staff to reingest updated DIPs as SIPs.

7.4.3.3 P Yes. Exported data can be re-
ingested with a replacing option. Ed
will verify whether the re-ingest will
also remove a deleted file from an
item.

2

P2-13 Support query requests - Demonstrate the ability to receive, retrieve,
display, and deliver data for query requests from other functions such as
Ingest, Access, and Administration.

7.3.2.1,
7.3.2.3,
7.4.6.1

P Yes 2

P2-14 Query requests from different storage locations - Demonstrate the ability
to handle query requests with required data to be sourced from different
storage locations.

7.3.2.2 P Yes. Files can be optionally stored
on a network file system.

2

P2-15 Queries against all metadata - Demonstrate the ability to run data queries
against all metadata used to manage the repository.

7.3.2.4 P Yes 2

P2-16 Audit trial - Demonstrate the creation of an audit trail of all actions including
who, when, how, what and where for Archive Storage and Data Management
Database.

7.1.3.4,
7.1.5.6,
7.2.1.4,
7.2.2.3,
7.2.5.2,
7.3.2.5,
7.3.3.7,
7.3.4.6,
7.4.3.7,
7.4.6.4

P No provenance for record update
and no email/screen confirmation for
delete/withdrawal.

1

32

P2-17 Generate reports - Demonstrate the ability to receive, generate, display, and
deliver management information reports and statistics such as summaries of
repository holdings by category, summaries of updates by category, user
codes, etc., usage statistics for access to repository holdings, and descriptive
information for a specific AIP.

7.3.3.1,
7.3.3.2,
7.3.3.5,
7.3.4.4

P Perl was installed to enable
DSpace's statistics tools to be
exercised, and the reports were
viewed by the entire working group.
// Monthly and total repository
lifetime reports can be generated
that show the total number of
archived items, but the items are not
broken down into categories (e.g.,
collections, submitters). The total
number of archived items shown in
the report includes all items ingested
via the web interface and by batch;
the "items ingested" counts only
those items ingested via the web
interface (does not include items
ingest by batch). Counts are shown
for creation, update, and deletion of
items, bitstreams, bundles,
collection, and communities; but
these counts are only for "all items,"
"all collections," etc. Updates to the
metadata of items are not counted or
otherwise reported. Counts are
reported for total user logins, total
item views, bitstream views,
searches performed. User logins are
also reported by userid. Items are
identified that were viewed more
than a certain number of times. Note:
Some actions shown in the "All
Actions Taken Report" were unclear.

1

P2-18 Schedule reports - Demonstrate the ability to generate reports in an ad-hoc
manner, automatically or to be triggered by a calendar or by a specific system
event.

7.3.3.4 P The Perl-based DSpace statistics
report generator can be run manually
by an administrator, or scheduled to
run at any desired frequency (e.g.,
daily, weekly, monthly) using the
Unix cron task scheduler. However,
only two type of reports can be
generated: total repository activity up
through the current date/time, and
monthly activity reports. DSpace can
be configured so that reports can be
viewed by all users, or only by
administrators.

1

P2-19 Time period for reports - Demonstrate the ability to allow the user to specify
a time period or set of time periods for reports and statistics.

7.3.3.6 P DSpace's Perl-based statistics and
report generation tools only enable
the creation of monthly reports.

0

P3 - Generate DIP P

P3-1 Generate DIP for access requests - Demonstrate the generation of DIPs by
putting AIPs and Descriptive Information back together for access requests.

7.1.5.5,
7.2.5.1,
7.4.6.2

P Yes 2

33

P3-2 Generate DIP for object maintenance - Demonstrate the generation of DIPs
by putting AIPs and Descriptive Information back together for
content/metadata update, versions upgrades and format migration by
authorized staff.

7.4.6.2,
7.4.3

P Yes 2

7.4.1 Administration - Negotiate Submission Agreement T

7.4.1.1 Manage submission agreements - Demonstrate that the system manages
information regarding submission agreements: that it tracks negotiation status
and written submission agreements, and that it maintains schedules.

7.4.1.1 T

0 7.4.1.2 Edit submission agreements - Demonstrate that the system allows
submission agreements to be edited, based on the access level of the user.

7.4.1.2 T

0
7.4.1.5 Terms of submission agreements - Demonstrate that the system stores the

terms of submission agreements, and uses the terms to monitor, review, and
process submissions.

7.4.1.5 T

0 7.4.1.6 Audit trail - Demonstrate that the system maintains an audit trail of all actions
related to submission agreements.

7.4.1.6 T

0

7.4.2 Administration - Manage System Configuration T

7.4.2.1 Monitor repository functionality - Demonstrate that the system monitors the
functionality of the entire repository.

7.4.2.1 T Functions are monitored but not
entire repository.

0

7.4.2.2 System configuration - By design analysis, confirm that the system
maintains the integrity of the system configuration.

7.4.2.2 T

0

7.4.2.3 Audits operations - Demonstrate that the system audits system operations,
performance, and usage.

7.4.2.3 T In log file. 2

7.4.2.4 Data management information - Demonstrate that the system collects and
can display system information concerning Data Management.

7.4.2.4 T Statistics reports show the number of
items, communities, collections,
bitstreams, and bundles that are
created, updated, and deleted in
each month, and totaled for all
months of operation. Additional
detailed information is collected in
the log file, but no report is
generated containing this detail. No
information collected or reported on
metadata updates. Reports don't
breakdown activity by specific user,
community, or collection.

1

7.4.2.5 Operational statistics - Demonstrate that the system collects and can display
operational statistics concerning Archival Storage.

7.4.2.5 T Statistics reports show total number
of items in archive, and number of
items archived each month. Batch
imported items are included in "total
in archive", but not included in "items
archived". No breakdowns by
collection, community, user. No
totals for bitstreams. Additional
detailed information is recorded in
the log file and history files, but no
tool is currently available to report on
this information.

1

7.4.3 Administration - Archival Information Update

34

7.4.5 Administration - Audit Submission T

7.4.5.1 Audits - Demonstrate that the system can support an audit procedure to verify
that submissions (SIP or AIP) meet specified requirements of the repository.
The audit method may be based on sampling, periodic review, or peer review.
[See NLM DRD Functional Requirements document, section 7.4.5 for
description of audit requirements.] (Also partially covered by 7.2.4.2)

7.4.5.1 T

0

7.4.5.2 Metadata audit - Demonstrate that the system can audit metadata as part of
the audit procedure.

7.4.5.2 T

0

7.4.5.3 Audit rejection - Demonstrate that the system can reject components of
audited information packages, based on specified audit requirements.

7.4.5.3 T

0

7.4.5.4 Audit report - Demonstrate that the system can generate an audit report,
based on the results of periodic audits of SIPs and AIPs.

7.4.5.4 T

0

7.4.5.5 Audit trail - Demonstrate that the system maintains an audit trail of all actions
regarding the auditing of SIPs and AIPs.

7.4.5.5 T

0

7.4.6 Administration - Activate Requests P

7.6.1 Access - Coordinate Access Activities - User Access A

7.6.1.1 Manage user permissions - Demonstrate the access controls for multiple
permission levels and user privileges.

7.6.1.1 A Discrete admin accounts;
authenticated users can be limited to
specific functions or collections.
Collections can be hidden from
public (anonymous) view.

2

7.6.1.2 Manage user restrictions - Demonstrate multiple levels of access restrictions
for NIH employees and general public based on licensing terms, embargo
periods, IP range restrictions, workstation access, and other possible legal
restrictions.

7.6.1.2,
7.6.1.3

A No built-in logic to tie access controls
to licensing data. No built-in access
controls based on IP ranges.
Collections could be hidden from
anonymous users via the
Authorizations policies.

1

7.6.1.4 Manage user settings - Demonstrate access settings allow staff to add or
edit descriptive metadata

7.6.1.4 A

3

7.6.1.7 Audit users - Demonstrate access mechanisms can identify individual users
and maintain audit log of user actions.

7.6.1.7 A Metadata edit actions are not logged
in a useable way.

0

7.6.1.5 Perform maintenance tasks - Demonstrate maintenance access including
adding new files, manipulating images, editing metadata, performing format
conversions/migrations, and troubleshooting system problems.

7.6.1.5 A Maintenance actions demonstrated
by Ed. Some can be through the UI,
some are command-line only.

1

7.6.1.6 Manage system rights - Demonstrate ultimate system rights access for NLM
system administrators and programmers.

7.6.1.6 A OCCS staff testing has
demonstrated system-level access
for both the system files and the
Oracle schema.

1

7.6.1 Access - Coordinate Access Activities - Rights/Data Control of Objects A

7.6.1.8 Manage access rights - Demonstrate access rights and conditions to
materials and storage directories provide for a combinational of create/write;
edit; read; delete privileges.

7.6.1.8 A via Authorizations section 3

35

7.6.1.9 Manage metadata rights - Demonstrate access rights may be associated
with the metadata relating to an individual object

7.6.1.9 A Authorizations do not apply to
metadata, only to Communities,
Collections, Items, Bundles and
Bitstreams. Item metadata is always
viewable.

0

7.6.1.13 Manage relationships - Demonstrate access rights and conditions can be
inherited from a parent object to any child object.

7.6.1.13 A via Authorizations section 3

7.6.1.14 Manage relationships - Demonstrate access rights and conditions can be
assigned to an object on an individual or group basis at same time.

7.6.1.14 A via Authorizations section 3

7.6.1.16 Automated retrieval - Demonstrate objects in the repository are accessible
for data mining or automated retrieval.

7.6.1.16 A DSpace does not internally facilitate
automated retrieval of its objects,
only the metatdata via OAI-PMH.
Full-text indexing by external source
may be facilitated through a Java
API in the future (JSR-170).

0

7.6.1.17 Metadata access - Demonstrate access to deleted and retracted metadata is
retained.

7.6.1.17 A Minimal audit history in a cumulative
log file accessible via scripts, but
history of metadata actions is sparse.

0

7.6.1.18 Metadata harvesting - Demonstrate metadata harvesting following the OAI-
PMH guidelines.

7.6.1.18 A DSpace will allow external hosts to
harvest its metadata via OAI-PMH. It
does not do harvesting (bring in
metatdata).

2

7.6.1.10 Access rights - Demonstrate access rights and conditions of use are applied
to each digital object and its related metadata and are machine readable and
actionable.

7.6.1.10,
7.6.1.11

A License can be associated with a
Collection or a specific item. There
is no logic triggered by the license,
which is just an unstructured text file.

1

7.6.1.12 Access conditions - Demonstrate access conditions are specific to a digital
object.

7.6.1.12 A Only collection-level restriction -
denial of read access to anonymous.

0

7.6.1.15 Free/Restricted access - Demonstrate free (items available via
internal/external delivery mechanisms) and restricted access (access
permission must be satisfy various criteria) status for objects, files, metadata,
etc.

7.6.1.15 A Verified collection-level restriction via
Authorizations (read access denied
to anonymous users). No file-level
restriction is available.

1

7.6.1 Access - Coordinate Access Activities - Search and Retrieval A

7.6.1.19 508 compliance - Demonstrate the search interface is web-accessible and
Section 508 compliant.

7.6.1.19 A User interface is entirely web-based.
Tested with Fangs and Accessibility
Add-on in Firefox. Tables are used
for layout, but alt tags may be input
for images. Content scaled logically
when CSS is disabled. Unable to
validate HTML code.

2

36

7.6.1.20 Search features - Demonstrate search includes: metadata, full-text, standard
boolean, proximity, "more like" this"

7.6.1.20,
7.6.1.21,
7.6.1.22,
7.6.1.23,
7.6.1.24

A Among the features listed, only
metadata and, probably, full-text, are
supported. Searching across
DSpace needs additional
investigation and it isn’t clear how
much configuration of Lucene (the
underlying search engine) can be
done.

1

7.6.1.25 Search results display - Demonstrate search results display includes date
sort; relevancy ranking; alpha by author or source.

7.6.1.25 A Help mentions category search -
how?

0

7.6.1.26 Relevancy ranking - Demonstrate whether relevancy ranking can be
manipulated via system as well as user defined settings.

7.6.1.26 A

0

7.6.1.29 Federated search - Demonstrate federated searching of different repository
sites.

7.6.1.29 A

0

7.6.1.30 Advanced search - Demonstrate advanced search includes search history;
saved searches; saved citation lists/bibliographies; alerts; various functions
and formats; dynamic selection of delivery media without recreating search
query.

7.6.1.30 A

0 7.6.1.31 Display formats - Demonstrate a variety of standard display formats are
provided and whether they are customizable by user

7.6.1.31 A

0

7.6.1.32 Alternate search interfaces - Demonstrate availability of alternate search
interfaces for mechanisms such as handhelds and PDAs.

7.6.1.32 A

0

7.6.1.33 Object access - Demonstrate access to the appropriate copy of the identified
item (text, image, video, etc.)

7.6.1.33 A The record does describe the
bitstream formats, but doesn't
suggest the "appropriate" one

1

7.6.1.34 Library holdings - Demonstrate integration of search results with library
holdings.

7.6.1.34 A

0

7.6.1.35 Response time - Demonstrate acceptable response time. 7.6.1.35 A Good so far, but with very limited
content. SPER testing suggests
response time may suffer with large
data sets.

1

7.6.1.36 External search engines - Demonstrate searching by outside search engines
such as usa.gov, Google, and Yahoo.

7.6.1.36 A Several DSpace installations have
been indexed by search engines.

2

7.6.1.37 External system access - Demonstrate external access to other repositories
or systems performing web harvesting functions.

7.6.1.37 A

2

7.6.1.38 Language support - Demonstrate how multiple languages and non-Roman
scripts are supported in search, retrieval and display.

7.6.1.38 A demonstrated display of Chinese
characters. Verified search &
retrieval using Feng Chia University
DSpace instance.

2

7.6.1.39 Versioning - Demonstrate access to all versions of digital objects in the
repository is provided.

7.6.1.39 A No versioning functionality present.
Any and all parts of an item will be
accessible, but no relationships
between parts can be conveyed.

0

7.6.1.40 Search settings - Demonstrate system settings and user-defined settings in
the search functions are provided.

7.6.1.40 A Only default system-provided search
settings are offered, through regular
and advanced search interface.

0

37

7.6.2 Access - Generate DIP A

7.6.2.1 Integrate holdings - Demonstrate integration of search results with library
holdings.

7.6.2.1 A Open-URLs can be utilized on item
pages for possibly OPAC querying
against the DC metadata associated
with the item.

1

7.6.2.2 Retrieval and notification - Demonstrate the generation function accepts a
dissemination request, retrieves AIP from archival storage and moves a copy
of the data to a staging area for further processing, and creates and sends a
report request to data management to obtain appropriate metadata.

7.6.2.2,
7.6.2.3,
7.6.2.4

A

3
7.6.2.7 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.2.7 A Info contained in log file but not

easily usable.
0

7.6.2.5 Response and delivery - Demonstrate that the prepared DIP response is
placed in the staging area and a message is generated and sent to Coordinate
Access Activities that the DIP is ready for delivery.

7.6.2.5 A This aspect of OAIS is not currently
modeled by DSpace. DSpace does
not appear to use a staging area but
serves requested content directly
from the Asset Store.

0

7.6.2.6 Storage retrieval - Demonstrate that Generate function accesses data
objects in staging storage and applies the requested processes if special
processing is required.

7.6.2.6 A See above. 0

7.6.3 Access - Deliver Response A

7.6.3.1 Web-accessibility - Demonstrate the display interface is web-accessible. 7.6.3.1 A Checked using Fangs and the
Accessibility Checker Add-on. It uses
tables for layout purposes, but was
unable to validate the HTML output.

1

7.6.3.2 Downloading - Demonstrate export function that provides XML output for
batch downloads

7.6.3.2 A Must be done through externally
scripting

0

7.6.3.3 Saving content - Demonstrate users are allowed to save digital content to a
hard-drive, e-mail, and/or save search results.

7.6.3.3 A Documents may be downloaded.
There does not appear to be a
function for emailing or saving
search results.

1

7.6.3.5 System notification - Demonstrate a confirmation message is returned to the
Coordinate Access Activities section after response has been sent.

7.6.3.5 A This aspect of OAIS is not currently
modeled by DSpace.

0

7.6.3.6 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.3.6 A Info contained in log file but not
easily usable.

0

7.6.3.4 Response request - Demonstrate a response request is received from
Coordinate Access Activities

7.6.3.4 A Demonstrated retrieval of objects via
the UI without issue.

2

8.1 Metadata Requirements M
8.1.1 Metadata formats - Demonstrate that the system can accept metadata

associated with objects in at least the following formats: All NLM DTDs, Dublin
Core, MARC21, MARCXML, ONIX, MODS, EAD, TEI.

8.1.1 M/T Does accept it but minimally 1 (M & T)

8.1.2 Metadata checks - Demonstrate the built-in checks on the incoming
metadata. Records not containing the minimally defined set of fields should
be flagged as problems, either to be returned to the submitter, or sent locally
for metadata enhancement.

8.1.2 M Batch - 0; manual - 1 0-1

8.1.5 Metadata updates - Demonstrate the ability to allow for metadata updates. 8.1.5 M Rather clunky 2

38

8.1.6a Metadata search and display - Demonstrate the ability to search and display
metadata (use of external tool possible).

8.1.6a M

2

8.1.8 PREMIS - Demonstrate standards compliance for PREMIS (use of external
tool possible).

8.1.8 M/T 0 (M & T)

8.1.9 METS - Demonstrate standards compliance for METS (use of external tool
possible).

8.1.9 M/T Only exports collections/files in
METS (via command line, not the
web interface) and is working on
METS import capability.

1 (M & T)

App A Descriptive metadata - Demonstrate that the minimum descriptive metadata
requirements described in Appendix A are accepted.

App A M

2

9.1 Additional Technical Infrastructure Requirements T
9.1.1 OAI-PMH - Demonstrate that the system can respond to OAI-PMH requests

as a data provider.
9.1.1 T DSpace can be a provider but does

not itself harvest and incorporate
other data. Key functions: identify
(handshake), listsets (list of
collections), listidentifiers (list of IDs),
listmetadataformat (list of metadata
formats), listrecords (metadata only,
no bit stream), etc.

2

9.1.2 Z39.50 - By design analysis, confirm that the system can respond to data
requests using the Z39.50 standard.

9.1.2 T

0

9.1.3 SRU/SRW - By design analysis, confirm that the system can respond to data
requests using the SRU and SRW data access standards.

9.1.3 T

0
9.1.4 SOAP - Demonstrate that the system can respond to web service requests

using SOAP.
9.1.4 T

0

9.1.5 UNICODE - Demonstrate that the system supports UNICODE. 9.1.5 T

3

9.1.6 OpenURL - By design analysis, confirm that the system is compliant with
OpenURL.

9.1.6 T

0

9.1.7 Z39.87 - By design analysis, confirm that the system supports the Z39.87
image metadata standard.

9.1.7 T

0
Notes: 1. Subgroups: A=Access, M=Metadata, P=Preservation, T=Technical Infrastructure

 2. Score indicates the extent to which the test element could be demonstrated: 0=None, 1=Low, 2=Moderate, 3=High

3.
Preservation tests - These sections of the functional requirements are covered by Test Plan sections P1, P2, and P3, which were defined by the Preservation subgroup

to facilitate testing.

4. Test elements having blue background are the subject of outstanding questions from the Access subgroup.

10. Additional Observations
10.1 Back button on browser cannot function as a navigation tool all the time, and there is no other navigation tool. (KK)

10.2 Files are just listed in the order they were ingested and cannot be sorted by item (KK).

39

10.3 Sub-community hierarchies get lost in the collection selection window during submission (FK).

10.4 Batch ingest does allow customized licenses to be included for different items (EL).

10.5 Internal errors were generated in the following instances:

1. When more than one user to edit a record simultaneously. The record does not appear to be locked and DSpace generates internal system errors (JM, DB).

2. While trying to edit policies for a collection (FK)

10.6 DSpace creates two XML files for item(s) containing both DC and NLM/DC metadata (such as permanence) during the export process. The dublincore.xml for all DC
elements and metadata_nlm.xml for all NLM/DC elements. (EL)

10.7 DSpace tracks every action as an entry in a text-based log file but the log file doesn’t reveal the specific action taken. The History file, on the other hand, records more
specific details than the log file but some of the entries don’t seem related to the actual action. For example, adding a subject and modifying an item type are recorded as
updated bit streams and updated bundles in the history file. No tools are provided to access the history file. We should check with the DSpace community to see if there are
any available tools already. (EL)

40

Appendix D – DigiTool Testing Results
Consolidated Digital Repository Test Plan

Last updated: June 13, 2008
Source

Require-
ments

Sub-
group

See Note
1

DigiTool 3.0 Tests

Test ID Test Plan Element Test Procedure and Results Score
(0-3)

Note 2

Notes

7.1.1 Ingest - Receive Submission T

7.1.1.7 File types - Demonstrate that the system can ingest content in all the file formats
listed as "supported" in Appendix B of the NLM DR Functional Requirements
document (plus MP3 and JPEG2000), specifically: MARC, PDF, Postscript, AIFF,
MPEG audio, WAV, MP3, GIF, JPEG, JPEG2000, PNG, TIFF, HTML, text, RTF, XML,
MPEG.
Demonstrate that the system can ingest the following types of content: articles,
journals, images, monographs, audio files, video files, websites, numeric data, text
files, and databases.
Conduct this test element by ingesting the set of files listed in the Test File
spreadsheet. (The files listed in this spreadsheet contain examples of all the file
formats, and all the content types identified above.)

7.1.1.7
7.1.1.9

T Can automatically create
thumbnails when ingesting
JPG2000, PDF. (Some initial
PDF ingest tests failed to produce
thumbnails due to unusual PDF
format.)

3
Answer was received
to Question QT4.

7.1.1.1 Manual review - Demonstrate that the system has the capability to require that
submitted content be manually reviewed before it is accepted into the repository.
Demonstrate that the system maintains submitted content in a staging area before it is
accepted.
Demonstrate that the system notifies a reviewer when new content is ready for review.
(Also see tests for 7.1.4.1, 7.1.4.2, and 8.1.2.)

7.1.1.1 T

3

7.1.1.2 Review and acceptance workflow - Demonstrate that the system supports a
workflow for the review and acceptance of submitted content. Demonstrate that the
workflow includes the following functions:
a - Receive and track content from producers;
b - Validate content based on submitter, expected format, file quality, duplication, and
completeness;
c - Normalize content by converting content into a supported format for final ingestion
into the repository;
d - Human review of content;
e - Acceptance or rejection of content or file format.

7.1.1.2,
7.1.1.10

T a - yes
b - no
c - no
d - yes
e - yes

2

7.1.1.3 Reason for rejection - Demonstrate that the system records a set of identifying
information or metadata that describes the reason for the rejection of submitted
content. Demonstrate two cases: (1) automatic rejection, and (2) rejection by a
human reviewer.

7.1.1.3 T 1 - no
2 - maybe - needs further testing

1

7.1.1.4 Rejection filter - Demonstrate that the system allows the creation of a filter that can
be used to automatically reject submitted content. (This capability will eliminate the
need for manual review of some submissions and resubmissions.)

7.1.1.4 T This is not filter based but rather
template based

1

41

7.1.1.5 Rejection notification - Demonstrate that the system can notify the producer or
donor when submitted content is rejected. Demonstrate two cases: (1) notification
after immediate rejection by an automated process, and (2) notification after rejection
by manual review.

7.1.1.5,
7.1.1.11

T Failure indication (instead of
"success") upon immediate
rejection.

1

(7.1.1.8) Metadata types - Demonstrate that the system can ingest content with associated
metadata in the following formats: all NLM DTDs, Dublin Core, MARC21, MARCXML,
ONIX, MODS, EAD, TEI, PREMIS, METS. (NOTE: This test is covered by tests 8.1.1,
8.1.8, and 8.1.9)

7.1.1.8,
8.1.1,
8.1.8,
8.1.9

M/T T=2.5 M=2.5

7.1.1.10 Format conversion - Demonstrate that the system has the capability to convert the
format of a file being ingested to a desired supported format. As a test case,
demonstrate that a WAV file can be converted to MP3 format when it is ingested. (An
external tool may be needed to perform the conversion. If this is the case,
demonstrate that the system can invoke the required external tool.)

7.1.1.10,
7.1.1.2

T Can automatically create JPG
and JP2 when ingesting TIFF.
Can automatically create JPG
when ingesting JP2. Can
automatically create JPG
thumbnail when ingesting JP2
and PDF. Can add other external
file converters.

2 Answer was received
to Question QT1

7.1.1.12 Resubmission - Demonstrate that the system can ingest a SIP that is resubmitted
after an error in the SIP was detected and corrected. Demonstrate two cases: the
resubmission can occur after an error was detected in (1) the content of the SIP, and
(2) the metadata of the SIP.

7.1.1.12 T Failed ingests can be rolled back,
edited, and reingested.

2

7.1.1.14 Versions - Demonstrate that the system can store, track, and link multiple versions of
a file.

7.1.1.14 T Alternate manifestations can be
created but there are no
"Versions"

0

7.1.1.15
a

Unique identifiers - Demonstrate that the system assigns a unique identifier to each
object ingested. Demonstrate two cases: (1) a unique identifier assigned to a digital
object, which may be comprised of a set of component files, and (2) a unique identifier
assigned to each of the component files of a digital object.

7.1.1.15a,
7.1.1.15b

T

3

7.1.1.15
b

Relationships - Demonstrate that the system can represent a parent-child
relationship between content items. Demonstrate two cases: (1) an object having
multiple components (e.g., a document having multiple pages, each in a separate file),
and (2) an object having multiple manifestations (e.g., an image having both TIFF and
JPEG files).

7.1.1.15b T

3

7.1.1.16 Audit trail - Demonstrate that the system maintains an audit trail of all actions
regarding receiving submissions (SIPs).

7.1.1.16 T

2.5 7.1.2 Ingest - Quality Assurance T

7.1.2.1 Virus checking - By design analysis, confirm that the system performs automatic
virus checking on submitted content files.

7.1.2.1 T

0 7.1.2.2 Transmission errors - Demonstrate that the system uses MD5, CRC, checksums, or
some other bit error detection technique to validate that each data file submitted is
received into the repository staging area without transmission errors.

7.1.2.2 T MD5 is created during ingest and
is saved with the file. However,
an MD5 generated pre-ingest
cannot be compared with the
DigiTool-created MD5 to verify
that transmission errors have not
occurred.

1 Answer was received
to Question QT2.

42

7.1.2.3 Submission validation - Demonstrate that the system verifies the validity of
submitted content based on the following criteria: submitter; expected file format; file
quality (e.g., actual format of file matches the filename extension, and content of file is
well-formed); duplication (e.g., existence of object in the repository); completeness of
metadata; completeness of file set (e.g., all expected files are included in the
submission).

7.1.2.3 T No submission validation other
than JHOVE checksum.
Checksum done at ingest and no
capability to compare externally
provided checksum with that done
during ingest.

1

7.1.2.4 QA UI - Demonstrate that the system allows NLM staff to perform manual/visual
quality assurance on staged SIPs via a user-friendly interface.

7.1.2.4 T

1 7.1.2.5 Reaction to QA errors - Demonstrate that the system can react to specified QA
errors in two ways: (1) request that the producer correct and resubmit the content, or
(2) automatically modify the submission (e.g., converting to a supported format).

7.1.2.5 T After failed ingest user can
rollback, edit, and resubmit. No
automatic modifications
performed.

1

7.1.2.6 File/batch accept/reject - Demonstrate that the system enables NLM staff to accept
or reject submitted content (SIPs) at the file or batch level.

7.1.2.6 T

1.5 7.1.2.7b Error reports - Demonstrate that the system generates error reports for ingest quality
assurance problems.

7.1.2.7b T

0 7.1.2.8 Adjustable level of manual QC - By design analysis, confirm that the system has the
ability to adjust the level of manual ingest quality control needed, based on the origin
of the file.

7.1.2.8 T

0
7.1.2.9 Audit trail - Demonstrate that the system maintains an audit trail of all actions

regarding ingest quality assurance.
7.1.2.9 T

0 7.1.4 Ingest - Generate Descriptive Information / Metadata M

7.1.4.1 Additional metadata - Demonstrate the entry of additional metadata (e.g. subject
headings, names, dates, “curatorial” descriptive metadata - evaluative information that
explains why an object is important, whether it was part of a larger collection (e.g., an
exhibit), etc.).

7.1.4.1 M

3

7.1.4.2 Validate metadata - Demonstrate ability to validate specified metadata elements. 7.1.4.2 M

1.5
7.1.4.4 Metadata storage - Demonstrate that metadata is stored in the database in a manner

that conforms to repository reformatting and linked to their corresponding objects via
an identifier.
o Demonstrates that basic descriptive metadata is also stored with the objects (e.g.,
unique identifier, title and date stored in the TIFF header) so that the objects can still
be identified in the event that information in the database is corrupted.
o See Appendix D for examples of TIFF header metadata requirements.
(Use of external tool probable)

7.1.4.4 M

3

7.1.4.5 Required descriptive elements - Demonstrate the ability to recognize required
descriptive elements.

7.1.4.5 M

3 7.1.4.7 Audit trail - Demonstrate the creation of an audit trail of all actions. 7.1.4.7 M

1
7.1.3 Ingest - Generate AIP Note 3 P

7.1.5 Ingest - Coordinate Updates Note 3 P

7.2.1 Archival Storage - Receive Data Note 3 P

7.2.2 Archival Storage - Manage Storage Hierarchy Note 3 P

7.2.3 Archival Storage - Replace Media Note 3 P

43

7.2.4 Archival Storage - Error Checking and Disaster Recovery Note 3 P

7.2.5 Archival Storage - Provide Data Note 3 P

7.3.1 Data Management - Administer Database Note 3 P

7.3.2 Data Management - Administer Perform Queries Note 3 P

7.3.3 Data Management - Generate Report Note 3 P

7.3.4 Data Management - Receive Database Updates Note 3 P

7.4 Administration Note 3 P

P1 - Generate AIP P

P1-1 Generate AIP - Demonstrate the generation of AIPs from ingested SIPs that do not
need normalization.

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P Can generate an XML-based
digital entity which contains points
to link all objects and metadata
but not physical AIP package.

2

P1-2 Generate AIP with normalization - Demonstrate the generation of AIPs from
ingested SIPs that need normalization - Transform an unsupported format to an
accepted format (See Appendix B).

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P No normalization. 0

P1-3 Derivative files - Demonstrate the generation of AIPs that consist of master files and
derivatives.

7.1.3.6 P Can convert a file from TIFF to
JP2 or from TIFF/JP2 to JPEG.
Can also generate JP2 thumbnail.

1.5

P1-4 Master files - Demonstrate the generation of AIPs that consist of master files only. 7.1.3.6 P QP1: How does DigiTool manage
manifestation relationships and
identify which is the master that
may or may not be in TIFF?
Opher: Masters are handled in
two contexts: (1) a preservation
context, where the
preservation_level field of the
digital entity can be set to a value
designated for masters (typically
"Preservation Master" or "High")
and used to differentiate between
storage rules; (2) an application
context, where the usage_type
field of the digital entity (e. g.
"main", "archive") can determine if
the object would be delivered.

2

P1-5 Store AIP in archival storage - Demonstrate the ability to transfer AIPs to Archive
Storage.

7.1.5.1,
7.2.1.1,
7.2.1.2

P See P1-1 2

P1-6 Store metadata in DB - Demonstrate the ability to generate and transfer Descriptive
Information (metadata) to Data Management Database.

7.1.5.2,
7.3.4.1

P Generate (extract) and transfer. 3

P1-7 Link metadata and objects - Demonstrate the ability to store identification
information in the Data Management database and link digital objects in the Archive
Storage.

7.1.5.4 P Yes 3

44

P1-8 Send confirmation - Demonstrate the ability to automatically send confirmation to
ingest and/or receiver when AIP and metadata transfers are completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P View in Success/Failed log on
screen only. QP2: Can DigiTool
send confirmation in an email to
receivers? Opher: view logs and
folder status of ingests at all
phases through the web module,
but emails are not sent.

1

P1-9 Send statistical reports - Demonstrate the ability to automatically send statistical
reports to ingest and/or receivers when AIP and metadata transfers are completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P Has to click on each ingest ID to
view details in the Success/Failed
log. QP3: Can DigiTool send
statistical reports (or along with
the confirmation) in an email to
receivers? Opher: view logs and
folder status of ingests at all
phases through the web module,
but emails are not sent.

1

P1-10 Send error reports - Demonstrate the ability to automatically send error reports to
ingest and/or receivers when AIP and/or metadata transfers fail.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P Only indicated in the Failed log.
QP4: Why is there a rollback icon
for a failed ingest in the Failed
log? Does a failed one get
ingested anyway? Opher: Yes –
in certain cases ingests partially
fail (e. g. not all tasks could be
100% completed) but digital
entities are created, and the
rollback allows for the staff to
analyze the problem, correct the
cause for the partial failures, and
re-ingest.

1

P2 - Administer Archival Storage & Database P

P2-1 Monitor transfer integrity - Demonstrate the built-in function to automatically monitor
and report if any AIPs and metadata are altered or corrupted during data transfer and
media change (refresh or replace).

7.2.2.1,
7.2.3.2,
7.2.4.1

P QP5 (Same as QT2 from Ed):
Does DigiTool compare the
checksum that is generated
before the ingest with the one that
is generated after the ingest?
Opher: DigiTool creates a file-
level checksum during ingest and
can check the validity of this
checksum of repository items as
an ongoing post-ingest
maintenance procedure. This
procedure only supports
checksums generated during the
ingest, not prior to it.

2

P2-2 Check data/referential integrity - Demonstrate the built-in function to perform routine
and special referential and data integrity checks (CRC or checksums) on files in the
Archive Storage and Data Management Database.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P No referential integrity check. 1

P2-3 Routine configuration for data/referential integrity - Demonstrate the ability to
allow for routine configuration.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P No referential integrity check. 1

45

P2-4 Disaster recovery - Demonstrate the ability to allow for disaster recovery including
data backup, off-site data storage, and data recovery.

7.2.4.3 P QP6: Can we reingest exported
files for data recovery to recreate
the repository? Opher: Yes - the
entire repository (or parts of it)
can be exported as digital entities
(with respective file streams) to
be re-ingested.

2

P2-5 User views - Demonstrate the ability to allow for customized user views of the
contents of the storage (create, maintain, and access).

7.3.1.4 P Not with external tool either. 0

P2-6 System CM - Demonstrate the ability to allow for configuration management of the
system hardware and software.

7.4.2 P Limited/restricted local control. 1.5

P2-7 Database CM - Demonstrate the ability to allow for configuration management of the
Data Management Database such as table, schema definitions, etc.

7.3.1.3 P No database table or schema
changes.

0

P2-8 Delete AIPs - Demonstrate the ability to allow the authorized staff to delete AIPs from
the repository including: removing the digital object's files and retaining associated
metadata, or removing both the files and metadata.

7.4.3.4 P Yes with rollback function. 3

P2-9 Coordinate AIP removal - Demonstrate the ability to generate an alert and
coordinate the removal of an AIP with maintenance of metadata held in other systems.

7.4.3.5 P No alert. 0

P2-10 File migrations - Demonstrate the ability to allow the authorized staff to schedule and
perform file migrations or migration on request for batched and individual files by
authorized staff.

7.4.3.6 P QP7: How to schedule and
perform file migration and
migration on request for batched
or individual files? Opher:
Filestreams for individual objects
can be exported, imported,
deleted or replaced using the
Meditor. Batch migrations cannot
be performed.

0

P2-11 Request DIPs for update - Demonstrate the ability to allow the authorized staff to
request DIPs for file migrations and data updates.

7.3.4.1,
7.3.4.2,
7.3.4.3,
7.4.3.1,
7.4.3.2,
7.4.6.2

P QP8: How to request DIPs for file
migrations and data updates?
Opher: This can be done on an
individual basis only. Objects can
be "pulled" from the repository
into the Meditor in various ways
for filestream maintenance.

1

P2-12 Re-ingest updated DIPs - Demonstrate the ability to allow the authorized staff to
reingest updated DIPs as SIPs.

7.4.3.3 P No duplication check or overwrite
option.

1

P2-13 Support query requests - Demonstrate the ability to receive, retrieve, display, and
deliver data for query requests from other functions such as Ingest, Access, and
Administration.

7.3.2.1,
7.3.2.3,
7.4.6.1

P Yes. 2

P2-14 Query requests from different storage locations - Demonstrate the ability to handle
query requests with required data to be sourced from different storage locations.

7.3.2.2 P NFS or URL retrieval. 2.5

P2-15 Queries against all metadata - Demonstrate the ability to run data queries against all
metadata used to manage the repository.

7.3.2.4 P Yes 2.5

46

P2-16 Audit trial - Demonstrate the creation of an audit trail of all actions including who, 7.1.3.4, P QP9: Does DigiTool keep an audit 1
when, how, what and where for Archive Storage and Data Management Database. 7.1.5.6, trail for all actions including who,

7.2.1.4, when, how, how and where for
7.2.2.3, the archive storage and
7.2.5.2, database? Opher: Such
7.3.2.5, preservation-oriented needs are
7.3.3.7, better addressed by our
7.3.4.6, Preservation system. In DigiTool,
7.4.3.7, the History metadata provides a
7.4.6.4 partial audit trail.

P2-17 Generate reports - Demonstrate the ability to receive, generate, display, and deliver
management information reports and statistics such as summaries of repository
holdings by category, summaries of updates by category, user codes, etc., usage
statistics for access to repository holdings, and descriptive information for a specific
AIP.

7.3.3.1,
7.3.3.2,
7.3.3.5,
7.3.4.4

P QP10: Which specific reports and
statistics can be generated?
Opher: Currently: Repository DE
and stream count, Depositor
Statistics Reports, Digital Entities
Viewing Reports. We are also
planning on implementing the
BIRT reporting system in DigiTool
later in 2008 – this will allow for
more extensive reporting.

1

P2-18 Schedule reports - Demonstrate the ability to generate reports in an ad-hoc manner,
automatically or to be triggered by a calendar or by a specific system event.

7.3.3.4 P QP11: Need clarification on how
available reports/statistics can be
generated in an ad-hoc manner,
automatically or to be triggered by
a calendar or by a specific system
event. Opher: These can be run
ad-hoc (immediately or
postponed), and can be
scheduled, by calendar, for
ongoing running using cron.

2

P2-19 Time period for reports - Demonstrate the ability to allow the user to specify a time
period or set of time periods for reports and statistics.

7.3.3.6 P QP12: Need clarification on how a
user can specify a time period or
set of time periods for reports and
statistics. Opher: DE viewing
reports can be filtered by date.
With the implementations of BIRT
this will be expanded.

1

P3 - Generate DIP P

P3-1 Generate DIP for access requests - Demonstrate the generation of DIPs by putting
AIPs and Descriptive Information back together for access requests.

7.1.5.5,
7.2.5.1,
7.4.6.2

P Yes 2

P3-2 Generate DIP for object maintenance - Demonstrate the generation of DIPs by
putting AIPs and Descriptive Information back together for content/metadata update,
versions upgrades and format migration by authorized staff.

7.4.6.2,
7.4.3

P Pending for answers to QP6, QP7
and QP8.

2

7.4.1 Administration - Negotiate Submission Agreement T

Manage submission agreements - Demonstrate that the system manages 7.4.1.1 T
information regarding submission agreements: that it tracks negotiation status and
written submission agreements, and that it maintains schedules.

47

7.4.1.1 0

7.4.1.2 Edit submission agreements - Demonstrate that the system allows submission
agreements to be edited, based on the access level of the user.

7.4.1.2 T

0 7.4.1.5 Terms of submission agreements - Demonstrate that the system stores the terms of
submission agreements, and uses the terms to monitor, review, and process
submissions.

7.4.1.5 T

0
7.4.1.6 Audit trail - Demonstrate that the system maintains an audit trail of all actions related

to submission agreements.
7.4.1.6 T

0 7.4.2 Administration - Manage System Configuration T

7.4.2.1 Monitor repository functionality - Demonstrate that the system monitors the 7.4.2.1 T

0

functionality of the entire repository.
7.4.2.2 System configuration - By design analysis, confirm that the system maintains the 7.4.2.2 T

0

integrity of the system configuration.
7.4.2.3 Audits operations - Demonstrate that the system audits system operations, 7.4.2.3 T

0

BIRT reporting system
performance, and usage. coming late 2008

7.4.2.4 Data management information - Demonstrate that the system collects and can 7.4.2.4 T

0

display system information concerning Data Management.
7.4.2.5 Operational statistics - Demonstrate that the system collects and can display 7.4.2.5 T Must use SQL reporting 0

operational statistics concerning Archival Storage.
7.4.3 Administration - Archival Information Update

7.4.5 Administration - Audit Submission T

7.4.5.1 Audits - Demonstrate that the system can support an audit procedure to verify that
submissions (SIP or AIP) meet specified requirements of the repository. The audit
method may be based on sampling, periodic review, or peer review. [See NLM DRD
Functional Requirements document, section 7.4.5 for description of audit
requirements.] (Also partially covered by 7.2.4.2)

7.4.5.1 T Ex Libris sees audit procedures
as a preservation concern, and
will be provided in the new
Preservation tool (DPS).

0 Answer was received
to Question QT3.

7.4.5.2

7.4.5.3

7.4.5.4

7.4.5.5

Metadata audit - Demonstrate that the system can audit metadata as part of the audit
procedure.
Audit rejection - Demonstrate that the system can reject components of audited
information packages, based on specified audit requirements.
Audit report - Demonstrate that the system can generate an audit report, based on
the results of periodic audits of SIPs and AIPs.
Audit trail - Demonstrate that the system maintains an audit trail of all actions
regarding the auditing of SIPs and AIPs.

7.4.5.2

7.4.5.3

7.4.5.4

7.4.5.5

T

T

T

T

0

0

0

0 7.4.6 Administration - Activate Requests P

7.6.1 Access - Coordinate Access Activities - User Access A

7.6.1.1 Manage user permissions - Demonstrate the access controls for multiple permission 7.6.1.1 A Good, but not robust. Staff 2
levels and user privileges. Privileges configuration governs a

fairly granular list of rights for
Staff Users, Admin Users.
Automated patron registration and
authentication possible using
LDAP.

7.6.1.2 Manage user restrictions - Demonstrate multiple levels of access restrictions for NIH 7.6.1.2, A Embargo period - Kaplan 2
employees and general public based on licensing terms, embargo periods, IP range 7.6.1.3 explained they hoped to do more
restrictions, workstation access, and other possible legal restrictions. with this feature.

48

7.6.1.4 Manage user settings - Demonstrate access settings allow staff to add or edit
descriptive metadata

7.6.1.4 A Meditor is used to add or edit
metadata.

2

7.6.1.7 Audit users - Demonstrate access mechanisms can identify individual users and
maintain audit log of user actions.

7.6.1.7 A Audit trails were detailed and
human-readable

3

7.6.1.5 Perform maintenance tasks - Demonstrate maintenance access including adding
new files, manipulating images, editing metadata, performing format
conversions/migrations, and troubleshooting system problems.

7.6.1.5 A Some of these functions are also
addressed below. File and
metadata access is provided via
web interface and Meditor client.

2

7.6.1.6 Manage system rights - Demonstrate ultimate system rights access for NLM system
administrators and programmers.

7.6.1.6 A Question for technical
infrastructure? Too ambiguous
for Access group to answer.

?

7.6.1 Access - Coordinate Access Activities - Rights/Data Control of Objects A

7.6.1.8 Manage access rights - Demonstrate access rights and conditions to materials and
storage directories provide for a combinational of create/write; edit; read; delete
privileges.

7.6.1.8 A How are storage directories
integrated into DigiTool? If
deleted in DigiTool does it delete
from servers?

3

7.6.1.9 Manage metadata rights - Demonstrate access rights may be associated with the
metadata relating to an individual object

7.6.1.9 A Embargo information is part of
metadata - how is this done?

2

7.6.1.13 Manage relationships - Demonstrate access rights and conditions can be inherited
from a parent object to any child object.

7.6.1.13 A Manifestations and complex
objects can share descriptive
metadata and/or usage rights.

2

7.6.1.14 Manage relationships - Demonstrate access rights and conditions can be assigned
to an object on an individual or group basis at same time.

7.6.1.14 A Batch metadata changes can be
performed via management jobs
(but _not_ via Object Manager).

2

7.6.1.16 Automated retrieval - Demonstrate objects in the repository are accessible for data
mining or automated retrieval.

7.6.1.16 A Open URL compliant, OAI-PMH
for metadata retrieval. Resource
Discovery has full-text searching,
but no built-in data mining
services.

1

7.6.1.17 Metadata access - Demonstrate access to deleted and retracted metadata is
retained.

7.6.1.17 A Once it's gone, it's gone. 0

7.6.1.18 Metadata harvesting - Demonstrate metadata harvesting following the OAI-PMH
guidelines.

7.6.1.18 A DigiTool will allow external hosts
to harvest its metadata via OAI-
PMH. It does not do harvesting
(bring in metatdata) using this
protocol but can do so via Z39.50.

2

7.6.1.10 Access rights - Demonstrate access rights and conditions of use are applied to each
digital object and its related metadata and are machine readable and actionable.

7.6.1.10,
7.6.1.11

A Rights and use conditions can be
recorded into controlled metadata
fields such as Usage Type, which
can restrict harvesting into Silos.

2

7.6.1.12 Access conditions - Demonstrate access conditions are specific to a digital object. 7.6.1.12 A Viewable in Object Manager 3

7.6.1.15 Free/Restricted access - Demonstrate free (items available via internal/external
delivery mechanisms) and restricted access (access permission must be satisfy
various criteria) status for objects, files, metadata, etc.

7.6.1.15 A Viewable in Object Manager, but
embargo is not sophisticated

2

7.6.1 Access - Coordinate Access Activities - Search and Retrieval A

49

7.6.1.19 508 compliance - Demonstrate the search interface is web-accessible and Section
508 compliant.

7.6.1.19 A Good faith effort well-documented
by ExLibris. Meditor is likely to be
weak in this area, but it's on the
way out.

2

7.6.1.20 Search features - Demonstrate search includes: metadata, full-text, standard
boolean, proximity, "more like" this"

7.6.1.20,
7.6.1.21,
7.6.1.22,
7.6.1.23,
7.6.1.24

A No proximity and no "More like
this", but Object Manager has a
controlled metadata search.

2

7.6.1.25 Search results display - Demonstrate search results display includes date sort;
relevancy ranking; alpha by author or source.

7.6.1.25 A No date ranking, but it is
promised in an upcoming service
pack.

2

7.6.1.26 Relevancy ranking - Demonstrate whether relevancy ranking can be manipulated via
system as well as user defined settings.

7.6.1.26 A Unclear how relevancy is
determined; cannot be modified.

1

7.6.1.29 Federated search - Demonstrate federated searching of different repository sites. 7.6.1.29 A Resource Discovery searches
across admin units by harvesting
content into silos.

2

7.6.1.30 Advanced search - Demonstrate advanced search includes search history; saved
searches; saved citation lists/bibliographies; alerts; various functions and formats;
dynamic selection of delivery media without recreating search query.

7.6.1.30 A Search can be refined by adding
additional values (using AND, OR
or WITHOUT). Search history
available during session. Can
save results to "my space" (one
object at a time).

1

7.6.1.31 Display formats - Demonstrate a variety of standard display formats are provided
and whether they are customizable by user

7.6.1.31 A A limited number of Resource
Discovery default Preferences
can be set by user.

1

7.6.1.32 Alternate search interfaces - Demonstrate availability of alternate search interfaces
for mechanisms such as handhelds and PDAs.

7.6.1.32 A

0 7.6.1.33 Object access - Demonstrate access to the appropriate copy of the identified item
(text, image, video, etc.)

7.6.1.33 A Metadata can indicate the "use"
manifestation of an object.

1

7.6.1.34 Library holdings - Demonstrate integration of search results with library holdings. 7.6.1.34 A Can be done using Primo, but not
internal to DigiTool.

0

7.6.1.35 Response time - Demonstrate acceptable response time. 7.6.1.35 A Response time in NLM
development environment can be
very slow, although ExLibris
demos generally showed
acceptable response

1

7.6.1.36 External search engines - Demonstrate searching by outside search engines such
as usa.gov, Google, and Yahoo.

7.6.1.36 A ExLibris is in the process of
making search-engine friendly
site maps - will be introduced in a
service pack. (Commercial
search engines do not want to
spider via OAI-PMH.)

1

7.6.1.37 External system access - Demonstrate external access to other repositories or
systems performing web harvesting functions.

7.6.1.37 A via OAI-PMH and Z39.50 2

7.6.1.38 Language support - Demonstrate how multiple languages and non-Roman scripts
are supported in search, retrieval and display.

7.6.1.38 A Resource Discovery has multiple
languages, Unicode support

2

50

7.6.1.39 Versioning - Demonstrate access to all versions of digital objects in the repository is 7.6.1.39 A All objects / manifestations can be 2
provided. provided, with metadata

distinguishing between
manifestations.

7.6.1.40 Search settings - Demonstrate system settings and user-defined settings in the 7.6.1.40 A Only default system-provided 0
search functions are provided. search settings are offered,

through regular and advanced
search interface.

7.6.2 Access - Generate DIP A

7.6.2.1 Integrate holdings - Demonstrate integration of search results with library holdings. 7.6.2.1 A Could be done via Primo, but not
internal to DigiTool

0

7.6.2.2 Retrieval and notification - Demonstrate the generation function accepts a
dissemination request, retrieves AIP from archival storage and moves a copy of the
data to a staging area for further processing, and creates and sends a report request
to data management to obtain appropriate metadata.

7.6.2.2,
7.6.2.3,
7.6.2.4

A AIP and DIP are conceptual in
DigiTool, but system provides the
bitstream through a pre-
determined viewer, and metadata
is also provided.

2

7.6.2.7 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.2.7 A Usage reporting is available to
administrators.

1

7.6.2.5 Response and delivery - Demonstrate that the prepared DIP response is placed in
the staging area and a message is generated and sent to Coordinate Access Activities
that the DIP is ready for delivery.

7.6.2.5 A Items are already 'harvested' into
the silo for public access - this is
probably comparable to
staging/delivery.

2

7.6.2.6 Storage retrieval - Demonstrate that Generate function accesses data objects in
staging storage and applies the requested processes if special processing is required.

7.6.2.6 A As above. 2

7.6.3 Access - Deliver Response A

7.6.3.1 Web-accessibility - Demonstrate the display interface is web-accessible. 7.6.3.1 A Resource Discovery is completely
web-based. Some object viewers
are served through the browser,
some objects rely on local PC
software.

3

7.6.3.2 Downloading - Demonstrate export function that provides XML output for batch
downloads

7.6.3.2 A no batch downloading of objects
available to end user, but
comprehensive exporting
available from management side.

1

7.6.3.3 Saving content - Demonstrate users are allowed to save digital content to a hard-
drive, e-mail, and/or save search results.

7.6.3.3 A Users can save / email, add to e-
shelf, SFX / Primo integration
possible.

3

7.6.3.5 System notification - Demonstrate a confirmation message is returned to the
Coordinate Access Activities section after response has been sent.

7.6.3.5 A

0 7.6.3.6 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.3.6 A usage reporting is available to
administrators.

1

7.6.3.4 Response request - Demonstrate a response request is received from Coordinate
Access Activities

7.6.3.4 A if patron is authenticated, DigiTool
can evaluate patron's rights
before delivering content.
Otherwise, Resource Discovery
delivers according to anonymous
rights.

1

8.1 Metadata Requirements M

51

8.1.1 Metadata formats - Demonstrate that the system can accept metadata associated
with objects in at least the following formats: All NLM DTDs, Dublin Core, MARC21,
MARCXML, ONIX, MODS, EAD, TEI.

8.1.1 M/T Mapping to DC only T=2
M=2

TEI/EAD not that
great

8.1.2 Metadata checks - Demonstrate the built-in checks on the incoming metadata.
Records not containing the minimally defined set of fields should be flagged as
problems, either to be returned to the submitter, or sent locally for metadata
enhancement.

8.1.2 M Batch=1; Manual = 2 1-2

8.1.5 Metadata updates - Demonstrate the ability to allow for metadata updates. 8.1.5 M

3
8.1.6a Metadata search and display - Demonstrate the ability to search and display

metadata (use of external tool possible).
8.1.6a M

1.5 8.1.8 PREMIS - Demonstrate standards compliance for PREMIS (use of external tool
possible).

8.1.8 M/T T=0 M=1

8.1.9 METS - Demonstrate standards compliance for METS (use of external tool possible). 8.1.9 M/T T=3 M=2

App A Descriptive metadata - Demonstrate that the minimum descriptive metadata
requirements described in Appendix A are accepted.

App A M

2.5 9.1 Additional Technical Infrastructure Requirements T
9.1.1 OAI-PMH - Demonstrate that the system can respond to OAI-PMH requests as a data

provider.
9.1.1 T OAI data provider only. 2

9.1.2 Z39.50 - By design analysis, confirm that the system can respond to data requests
using the Z39.50 standard.

9.1.2 T

2 9.1.3 SRU/SRW - By design analysis, confirm that the system can respond to data requests
using the SRU and SRW data access standards.

9.1.3 T

0 9.1.4 SOAP - Demonstrate that the system can respond to web service requests using
SOAP.

9.1.4 T

3 9.1.5 UNICODE - Demonstrate that the system supports UNICODE. 9.1.5 T

3 9.1.6 OpenURL - By design analysis, confirm that the system is compliant with OpenURL. 9.1.6 T

3 9.1.7 Z39.87 - By design analysis, confirm that the system supports the Z39.87 image
metadata standard.

9.1.7 T

1.5

Notes: 1. Subgroups: A=Access, M=Metadata, P=Preservation, T=Technical Infrastructure

 2. Score indicates the extent to which the test element could be demonstrated: 0=None, 1=Low, 2=Moderate, 3=High

3.
Preservation tests - These sections of the functional requirements are covered by Test Plan sections P1, P2, and P3, which were defined by the Preservation subgroup to facilitate

testing.

4. Test elements having blue background are the subject of outstanding questions from the Access subgroup.

52

Appendix E – Fedora Testing Results
Consolidated Digital Repository Test Plan

Last updated: October 16, 2008
Source
Requir

e-
ments

Sub-
group

See Note
1

Fedora 2.2/Fez 2 Release Candidate 1
(Score reflects Fedora/Fez total)

Test Procedure and
Results

Score
(0-3)

Note 2

Notes

Test
ID

Test Plan Element Fedora Fez Both or Not Sure

7.1.1 Ingest - Receive Submission T

7.1.1.7 File types - Demonstrate that the system can ingest content in all the file
formats listed as "supported" in Appendix B of the NLM DR Functional
Requirements document (plus MP3 and JPEG2000), specifically: MARC,
PDF, Postscript, AIFF, MPEG audio, WAV, MP3, GIF, JPEG, JPEG2000,
PNG, TIFF, HTML, text, RTF, XML, MPEG.
Demonstrate that the system can ingest the following types of content:
articles, journals, images, monographs, audio files, video files, websites,
numeric data, text files, and databases.
Conduct this test element by ingesting the set of files listed in the Test File
spreadsheet. (The files listed in this spreadsheet contain examples of all
the file formats, and all the content types identified above.)

7.1.1.7
7.1.1.9

T 3 3 3 Tests and demo examples
show that all file types are
supported.

7.1.1.1 Manual review - Demonstrate that the system has the capability to require
that submitted content be manually reviewed before it is accepted into the
repository.
Demonstrate that the system maintains submitted content in a staging area
before it is accepted.
Demonstrate that the system notifies a reviewer when new content is ready
for review.
(Also see tests for 7.1.4.1, 7.1.4.2, and 8.1.2.)

7.1.1.1 T 0 - Fedora
provides no

manual
review.

1 - Fez can be configured
with a workflow that

includes manual review, but
no notification is sent.

1

7.1.1.2 Review and acceptance workflow - Demonstrate that the system
supports a workflow for the review and acceptance of submitted content.
Demonstrate that the workflow includes the following functions:
a - Receive and track content from producers;
b - Validate content based on submitter, expected format, file quality,
duplication, and completeness;
c - Normalize content by converting content into a supported format for final
ingestion into the repository;
d - Human review of content;
e - Acceptance or rejection of content or file format.

7.1.1.2,
7.1.1.1
0

T 0 - Fedora
provides no
review and
acceptance
workflow.

1.5 - Fez provides (a), (d),
and part of (e).

1.5 Fez provides some limited
workflow capabilities:
manual accept and reject;
staging area for
submissions; JHOVE
invoked to get file format
information. Missing from
Fez: no notifications; no
normalization; no reject bin;
no comments on rejection;
no submitter-based content
validation; no rejection
based on JHOVE results; no
duplicate and completeness
checks.

7.1.1.3 Reason for rejection - Demonstrate that the system records a set of
identifying information or metadata that describes the reason for the
rejection of submitted content. Demonstrate two cases: (1) automatic
rejection, and (2) rejection by a human reviewer.

7.1.1.3 T 0 - Fedora
provides no
review and
rejection
workflow.

1 - Fez provides manual
rejection, but no reason for
rejection, and no automatic

rejection.

1

53

7.1.1.4 Rejection filter - Demonstrate that the system allows the creation of a filter
that can be used to automatically reject submitted content. (This capability
will eliminate the need for manual review of some submissions and
resubmissions.)

7.1.1.4 T 0 - Fedora
has no
review /
rejection

workflow or
rejection

filter.

0 - Fez provides no
rejection filter.

0

7.1.1.5 Rejection notification - Demonstrate that the system can notify the
producer or donor when submitted content is rejected. Demonstrate two
cases: (1) notification after immediate rejection by an automated process,
and (2) notification after rejection by manual review.

7.1.1.5,
7.1.1.1
1

T 0 - no review
/ rejection

workflow or
rejection

notification.

0 - no rejection notification 0

(7.1.1.
8)

Metadata types - Demonstrate that the system can ingest content with
associated metadata in the following formats: all NLM DTDs, Dublin Core,
MARC21, MARCXML, ONIX, MODS, EAD, TEI, PREMIS, METS. (NOTE:
This test is covered by tests 8.1.1, 8.1.8, and 8.1.9)

7.1.1.8,
8.1.1,
8.1.8,
8.1.9

M/T M=2.75, T=3 M=2.75,T
=2

M=2.75

, T=3
Takes schemas very well
but not necessarily DTDs.
Needs disseminators to be
configured.

7.1.1.1
0

Format conversion - Demonstrate that the system has the capability to
convert the format of a file being ingested to a desired supported format.
As a test case, demonstrate that a WAV file can be converted to MP3
format when it is ingested. (An external tool may be needed to perform the
conversion. If this is the case, demonstrate that the system can invoke the
required external tool.)

7.1.1.1
0,
7.1.1.2

T 2 - Fedora
disseminator
s can provide

converted
files at the

time of
access.

2 - Fez uses ImageMagik to
convert image formats,

create thumbnails.

2 Fedora's ImageManip
service can convert images
between gif, jpg, tiff, png,
and bmp; can also resize,
crop, watermark, adjust
brightness, convert to
grayscale.

7.1.1.1
2

Resubmission - Demonstrate that the system can ingest a SIP that is
resubmitted after an error in the SIP was detected and corrected.
Demonstrate two cases: the resubmission can occur after an error was
detected in (1) the content of the SIP, and (2) the metadata of the SIP.

7.1.1.1
2

T 1 1 1 SIPs can be resubmitted,
but neither Fedora nor Fez
has any specific support
(e.g. no rollback).

7.1.1.1
4

Versions - Demonstrate that the system can store, track, and link multiple
versions of a file.

7.1.1.1
4

T 3 - Every
datastream
in an object
(external file
or embedded

XML) can
have multiple

versions,
which are
stored and
linked from
the object,
and can be
individually
retrieved.

2 - Fez add-on packages
("Version Viewing" and
"Versioning of Content"
expose the underlying

Fedora versioning
capability to the Fez UI.

3

7.1.1.1
5a

Unique identifiers - Demonstrate that the system assigns a unique
identifier to each object ingested. Demonstrate two cases: (1) a unique
identifier assigned to a digital object, which may be comprised of a set of
component files, and (2) a unique identifier assigned to each of the
component files of a digital object.

7.1.1.1
5a,
7.1.1.1
5b

T 3 - Unique
identifier for
every object,

and every
datastream

(file or
metadata)
within the

object.

3 - Fez exposes underlying
Fedora unique identifiers.

3

54

7.1.2.2

7.1.1.1 Relationships - Demonstrate that the system can represent a parent-child 7.1.1.1 T 3 - 1 - Limited exposure of 3
5b relationship between content items. Demonstrate two cases: (1) an object 5b Relationship Fedora's underlying

having multiple components (e.g., a document having multiple pages, each
in a separate file), and (2) an object having multiple manifestations (e.g., an

s stored as
RDF in

relationships.

image having both TIFF and JPEG files). RELS-EXT
datastream

of every
object. RDF
Triplestore
used for

quick search
and retrieval

of
relationships.
Extendable
ontology of

object
relationships

provided.
7.1.1.1 Audit trail - Demonstrate that the system maintains an audit trail of all 7.1.1.1 T 2.5 - AUDIT 2 - Fez workflows store 2.5
6 actions regarding receiving submissions (SIPs). 6 datastream

(XML)
submission events in
PREMIS datastream.

included in
every

object's
FOXML,
records

submission
events.

7.1.2 Ingest - Quality Assurance T

7.1.2.1 Virus checking - By design analysis, confirm that the system performs
automatic virus checking on submitted content files.

7.1.2.1 T 0 0 0 Virus checking must be
performed pre-ingest with
external tools.

Transmission errors - Demonstrate that the system uses MD5, CRC,
checksums, or some other bit error detection technique to validate that
each data file submitted is received into the repository staging area without
transmission errors.

7.1.2.2 T 1 - See note. 0 - no transmission error 1 Fedora design allows MD5
checks or other checksum to be

provided in SIP, and Fedora
will validate that no
transmission error occurs
during ingest (score=3).
However, this feature
inoperative in Fedora 2.2.3
due to code bug (score=1).

7.1.2.3 Submission validation - Demonstrate that the system verifies the validity
of submitted content based on the following criteria: submitter; expected file
format; file quality (e.g., actual format of file matches the filename
extension, and content of file is well-formed); duplication (e.g., existence of
object in the repository); completeness of metadata; completeness of file
set (e.g., all expected files are included in the submission).

7.1.2.3 T 0 1 - Fez invokes JHOVE to
check file format, but does
not reject if incorrect or bad

format found.

1

7.1.2.4

7.1.2.5

7.1.2.6

QA UI - Demonstrate that the system allows NLM staff to perform
manual/visual quality assurance on staged SIPs via a user-friendly
interface.
Reaction to QA errors - Demonstrate that the system can react to
specified QA errors in two ways: (1) request that the producer correct and
resubmit the content, or (2) automatically modify the submission (e.g.,
converting to a supported format).
File/batch accept/reject - Demonstrate that the system enables NLM staff
to accept or reject submitted content (SIPs) at the file or batch level.

7.1.2.4

7.1.2.5

7.1.2.6

T

T

T

0

0

0

2

0

1 - Batch or single file, no
email

2

0

1

55

7.1.2.7
b

Error reports - Demonstrate that the system generates error reports for
ingest quality assurance problems.

7.1.2.7
b

T 0 0 0 No statistics or error reports

7.1.2.8 Adjustable level of manual QC - By design analysis, confirm that the
system has the ability to adjust the level of manual ingest quality control
needed, based on the origin of the file.

7.1.2.8 T 0 0 0

7.1.2.9 Audit trail - Demonstrate that the system maintains an audit trail of all
actions regarding ingest quality assurance.

7.1.2.9 T 1 1 1

7.1.4 Ingest - Generate Descriptive Information / Metadata M

7.1.4.1 Additional metadata - Demonstrate the entry of additional metadata (e.g.
subject headings, names, dates, “curatorial” descriptive metadata -
evaluative information that explains why an object is important, whether it
was part of a larger collection (e.g., an exhibit), etc.).

7.1.4.1 M 3 3 3 Creating disseminators for
flat metadata is not too hard
it's digging out chunk of the
objects that are hard and
can cause the system to
crash when dealing with
terabytes.

7.1.4.2 Validate metadata - Demonstrate ability to validate specified metadata
elements.

7.1.4.2 M 2 2 2 Can setup required
elements

7.1.4.4 Metadata storage - Demonstrate that metadata is stored in the database in
a manner that conforms to repository reformatting and linked to their
corresponding objects via an identifier.
o Demonstrates that basic descriptive metadata is also stored with the
objects (e.g., unique identifier, title and date stored in the TIFF header) so
that the objects can still be identified in the event that information in the
database is corrupted.
o See Appendix D for examples of TIFF header metadata requirements.
(Use of external tool probable)

7.1.4.4 M 3 3 3 Both bullet 1 and 2 are 3

7.1.4.5 Required descriptive elements - Demonstrate the ability to recognize
required descriptive elements.

7.1.4.5 M 3 3 3

7.1.4.7 Audit trail - Demonstrate the creation of an audit trail of all actions. 7.1.4.7 M 3 3 3
7.1.3 Ingest - Generate AIP Note 3 P
7.1.5 Ingest - Coordinate Updates Note 3 P
7.2.1 Archival Storage - Receive Data Note 3 P
7.2.2 Archival Storage - Manage Storage Hierarchy Note 3 P
7.2.3 Archival Storage - Replace Media Note 3 P
7.2.4 Archival Storage - Error Checking and Disaster Recovery Note 3 P
7.2.5 Archival Storage - Provide Data Note 3 P
7.3.1 Data Management - Administer Database Note 3 P
7.3.2 Data Management - Administer Perform Queries Note 3 P
7.3.3 Data Management - Generate Report Note 3 P
7.3.4 Data Management - Receive Database Updates Note 3 P
7.4 Administration Note 3 P

P1 - Generate AIP P

P1-1 Generate AIP - Demonstrate the generation of AIPs from ingested SIPs
that do not need normalization.

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P 2 2

2

Fedora/Fez can generate a
FOXML or METS file that
contains metadata and links
to all datastreams but does
not create a physical AIP
package.

56

P1-2 Generate AIP with normalization - Demonstrate the generation of AIPs
from ingested SIPs that need normalization - Transform an unsupported
format to an accepted format (See Appendix B).

7.1.3.1,
7.1.3.2,
7.1.3.3,
7.4.1

P 0 0

0

No normalization.

P1-3 Derivative files - Demonstrate the generation of AIPs that consist of
master files and derivatives.

7.1.3.6 P 3 1.5

3

Fedora's disseminator can
be configured to accept
images in the gif, jpg, tiff,
png and bmp formats and
can also convert images
between these formats. Fez
can create three jpg
derivatives for each ingested
image datastream:
thumbnail, web-preview and
access copy.

P1-4 Master files - Demonstrate the generation of AIPs that consist of master
files only.

7.1.3.6 P 2 2 2 Fedora assigns a PID to
each datastream. Fez uses
a prefix (archival, preview or
thumbnail) to label each
datastream.

P1-5 Store AIP in archival storage - Demonstrate the ability to transfer AIPs to
Archive Storage.

7.1.5.1,
7.2.1.1,
7.2.1.2

P 2 2 2

P1-6 Store metadata in DB - Demonstrate the ability to generate and transfer
Descriptive Information (metadata) to Data Management Database.

7.1.5.2,
7.3.4.1

P 3 3 3 With Fedora's GSearch, all
metadata in the
FOXML/METS can be
indexed.

P1-7 Link metadata and objects - Demonstrate the ability to store identification
information in the Data Management database and link digital objects in the
Archive Storage.

7.1.5.4 P 3 3 3

P1-8 Send confirmation - Demonstrate the ability to automatically send
confirmation to ingest and/or receiver when AIP and metadata transfers are
completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P 1 1 1 Both can provide a
confirmation on the screen.
The email capability is not
available for testing.

P1-9 Send statistical reports - Demonstrate the ability to automatically send
statistical reports to ingest and/or receivers when AIP and metadata
transfers are completed.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P 0 1 1 Only Fez has a limited on-
screen view of "My Created
Items". The email capability
is not available for testing.

P1-10 Send error reports - Demonstrate the ability to automatically send error
reports to ingest and/or receivers when AIP and/or metadata transfers fail.

7.1.5.1,
7.1.5.3,
7.2.1.3,
7.3.3.3

P 1 1

1

Both will display an error
message on the screen if
the ingest fails but Fedora
also records it in the log file.
The email capability is not
available for testing.

P2 - Administer Archival Storage & Database P

P2-1 Monitor transfer integrity - Demonstrate the built-in function to 7.2.2.1, P 3 0

3

Fedora generates a
automatically monitor and report if any AIPs and metadata are altered or 7.2.3.2, checksum for every ingested
corrupted during data transfer and media change (refresh or replace). 7.2.4.1 datastream. A pre-

generated checksum could
be supplied in the ingest
process but the validation
process seems having bugs
(fail any supplied checksum,
good or bad).

57

P2-2 Check data/referential integrity - Demonstrate the built-in function to
perform routine and special referential and data integrity checks (CRC or
checksums) on files in the Archive Storage and Data Management
Database.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P 2 0

2

Fedora maintains a
checksum for each
datastream in the repository
but provides no referential
integrity check.

P2-3 Routine configuration for data/referential integrity - Demonstrate the
ability to allow for routine configuration.

7.2.4.2,
7.3.1.1,
7.3.1.2,
7.4.4

P 1 1

1

No referential integrity
check.

P2-4 Disaster recovery - Demonstrate the ability to allow for disaster recovery
including data backup, off-site data storage, and data recovery.

7.2.4.3 P 2 1 2 In Fedora there are three
ways to export data: Archive
(the exported XML file
includes all metadata and
Base64-encoded
datastreams); Migrate (the
exported XML file contains
metadata and links to
datastreams - for migration
of objects from one
repository to another);
Public Access (similar to
Migrate but for use outside
the context of a Fedora
repository). As long as all
the datastreams are backed
up, Fedora claims that the
FOXML file can be used to
rebuild the entire repository.
Fez has a very limited
export function that can only
output the metadata and
links to datastreams in
spreadsheet/CSV format
wrapped in XML.

P2-5 User views - Demonstrate the ability to allow for customized user views of
the contents of the storage (create, maintain, and access).

7.3.1.4 P 2 2 2

P2-6 System CM - Demonstrate the ability to allow for configuration
management of the system hardware and software.

7.4.2 P 2 2.5 2.5 Fedora has a limited admin
client but Fez provides a
GUI interface for system
configuration management.

P2-7 Database CM - Demonstrate the ability to allow for configuration
management of the Data Management Database such as table, schema
definitions, etc.

7.3.1.3 P 2 2 2

P2-8 Delete AIPs - Demonstrate the ability to allow the authorized staff to delete
AIPs from the repository including: removing the digital object's files and
retaining associated metadata, or removing both the files and metadata.

7.4.3.4 P 3 3

3

Fedora provides a purge
function that can physically
remove an object from the
repository. Fez has a delete
function but it only marks an
object for delete instead of
removing it from the
repository. Using Fedora to
purge an object that was
marked for delete by Fez
may not completely remove
all associated files/data.

P2-9 Coordinate AIP removal - Demonstrate the ability to generate an alert and
coordinate the removal of an AIP with maintenance of metadata held in
other systems.

7.4.3.5 P 0 0 0

58

P2-10 File migrations - Demonstrate the ability to allow the authorized staff to
schedule and perform file migrations or migration on request for batched
and individual files by authorized staff.

7.4.3.6 P 0 0 0

P2-11 Request DIPs for update - Demonstrate the ability to allow the authorized
staff to request DIPs for file migrations and data updates.

7.3.4.1,
7.3.4.2,
7.3.4.3,
7.4.3.1,
7.4.3.2,
7.4.6.2

P 3 0

3

Fedora can export metadata
and/or datastream (in
Base64 encoding). Fez can
only export metadata and
links to datastreams in
spreadsheet/CSV format
wrapped in XML but not
datastreams.

P2-12 Re-ingest updated DIPs - Demonstrate the ability to allow the authorized
staff to reingest updated DIPs as SIPs.

7.4.3.3 P 2 0 2 Fedora allows the user to
specify changes in the
FOXML/METS file for re-
ingest but it does not allow
the same UID to be
reingested. Fez is not
capable of re-ingesting its
own exported content.

P2-13 Support query requests - Demonstrate the ability to receive, retrieve,
display, and deliver data for query requests from other functions such as
Ingest, Access, and Administration.

7.3.2.1,
7.3.2.3,
7.4.6.1

P 2 2 2

P2-14 Query requests from different storage locations - Demonstrate the
ability to handle query requests with required data to be sourced from
different storage locations.

7.3.2.2 P 3 2

3

Fedora supports data
sourced from local, external
(remote in FOXMAL) or
redirect (not disseminated).
Fez supports data sourced
from local or redirect.

P2-15 Queries against all metadata - Demonstrate the ability to run data queries
against all metadata used to manage the repository.

7.3.2.4 P 2.5 2 2.5 With Fedora GSearch, all
metadata captured in the
FOXMAL/XML file can be
indexed for search. Fez has
a built-in function that can
be used to manage all
searchable keys.

P2-16 Audit trial - Demonstrate the creation of an audit trail of all actions
including who, when, how, what and where for Archive Storage and Data
Management Database.

7.1.3.4,
7.1.5.6,
7.2.1.4,
7.2.2.3,
7.2.5.2,
7.3.2.5,
7.3.3.7,
7.3.4.6,
7.4.3.7,
7.4.6.4

P 2.5 1.5 2.5 Fedora/Fez can record all
actions in FOXML.

P2-17 Generate reports - Demonstrate the ability to receive, generate, display,
and deliver management information reports and statistics such as
summaries of repository holdings by category, summaries of updates by
category, user codes, etc., usage statistics for access to repository
holdings, and descriptive information for a specific AIP.

7.3.3.1,
7.3.3.2,
7.3.3.5,
7.3.4.4

P 1 1

1

Fedora has a limited
“Repository Reports”
capability that can be
invoked from the REST
interface (.../fedora/report).
The report lists all objects in
the repository of a specified
type that have been
modified or created in a
specified timeframe. Fez
also has a limited reporting
capability that allows the
“admin” user to view a list of

59

"My Created Items" on the
screen.

P2-18 Schedule reports - Demonstrate the ability to generate reports in an ad- 7.3.3.4 P 0 0
hoc manner, automatically or to be triggered by a calendar or by a specific
system event.

P2-19 Time period for reports - Demonstrate the ability to allow the user to 7.3.3.6 P 1 1

1

Fedora’s limited “Repository
specify a time period or set of time periods for reports and statistics. Reports” capability allows

the user to specify a time
period for the report, e.g., all
objects created or modified
in the past 24 hours, 7 days,
etc. Fez allows the “admin”
user to specify a “before” or
“after” date to find items only
in "My Created Items".

P3 - Generate DIP P

P3-1 Generate DIP for access requests - Demonstrate the generation of DIPs 7.1.5.5, P 2 2

2

Fedora has both REST and
by putting AIPs and Descriptive Information back together for access
requests.

7.2.5.1,
7.4.6.2

SOAP interfaces available in
its access API (API-A). A
coordinated set of web
service calls can be made to
retrieve all the metadata and
datastreams of an object,
which can be combined and
displayed to a user. Fez
provides similar functions for
access requests.

P3-2 Generate DIP for object maintenance - Demonstrate the generation of
DIPs by putting AIPs and Descriptive Information back together for

7.4.6.2,
7.4.3

P 2 2 2 The Fedora Admin Client
enables authorized

content/metadata update, versions upgrades and format migration by administrators to edit
authorized staff. metadata, import new

versions of datastreams,
and export entire objects for
migration. Command line
utilities provide key functions
of the management API
(API-M) that can be invoked
directly or from customized
scripts. DIP objects can be
exported in FOXML/METS
format, and can include all
metadata and all
datastreams (base64-
encoded) in a single XML
file. Fez has a workflow-
based export function that
allows the “admin” user to
export selected community,
collection or record in CSV
or spreadsheet format

60

wrapped in XML. The
exported XML file contains
only metadata and file
names of datastreams.

7.4.1 Administration - Negotiate Submission Agreement T

7.4.1.1 T 0 0 07.4.1.1 Manage submission agreements - Demonstrate that the system manages
information regarding submission agreements: that it tracks negotiation
status and written submission agreements, and that it maintains schedules.

7.4.1.2 Edit submission agreements - Demonstrate that the system allows 7.4.1.2 T 0 0 0
submission agreements to be edited, based on the access level of the user.

7.4.1.5 Terms of submission agreements - Demonstrate that the system stores 7.4.1.5 T 0 0 0
the terms of submission agreements, and uses the terms to monitor,
review, and process submissions.

7.4.1.6 Audit trail - Demonstrate that the system maintains an audit trail of all 7.4.1.6 T 0 0 0
actions related to submission agreements.

7.4.2 Administration - Manage System Configuration T

7.4.2.1 Monitor repository functionality - Demonstrate that the system monitors
the functionality of the entire repository.

7.4.2.1 T 0 0 0

7.4.2.2 System configuration - By design analysis, confirm that the system
maintains the integrity of the system configuration.

7.4.2.2 T 0 - Info
stored in
FOXML
objects;

some info
saved to

relational DB

2 - Fez utility to manually
check site installation

configuration

2 Easy-to-use command-line
function that rebuilds
Resource Index and
relational DB if corruption
occurs.

7.4.2.3 Audits operations - Demonstrate that the system audits system
operations, performance, and usage.

7.4.2.3 T 1 - Log file
contains
errors for
sysadmin

and

1 - Some limited Fez logs 1

programmer.
Log files at
file level.

Audit trail for
each object
in FOXML.

7.4.2.4 Data management information - Demonstrate that the system collects
and can display system information concerning Data Management.

7.4.2.4 T 0 0 0

7.4.2.5 Operational statistics - Demonstrate that the system collects and can
display operational statistics concerning Archival Storage.

7.4.2.5 T 0 0 0

7.4.3 Administration - Archival Information Update

7.4.5 Administration - Audit Submission T

61

7.4.5.1 Audits - Demonstrate that the system can support an audit procedure to
verify that submissions (SIP or AIP) meet specified requirements of the
repository. The audit method may be based on sampling, periodic review,
or peer review. [See NLM DRD Functional Requirements document, section
7.4.5 for description of audit requirements.] (Also partially covered by
7.2.4.2)

7.4.5.1 T 0 0 0

7.4.5.2 Metadata audit - Demonstrate that the system can audit metadata as part
of the audit procedure.

7.4.5.2 T 0 0 0

7.4.5.3 Audit rejection - Demonstrate that the system can reject components of
audited information packages, based on specified audit requirements.

7.4.5.3 T 0 0 0

7.4.5.4 Audit report - Demonstrate that the system can generate an audit report,
based on the results of periodic audits of SIPs and AIPs.

7.4.5.4 T 0 0 0

7.4.5.5 Audit trail - Demonstrate that the system maintains an audit trail of all
actions regarding the auditing of SIPs and AIPs.

7.4.5.5 T 0 0 0

7.4.6 Administration - Activate Requests P

7.6.1 Access - Coordinate Access Activities - User Access A

7.6.1.1 Manage user permissions - Demonstrate the access controls for multiple
permission levels and user privileges.

7.6.1.1 A User
permissions
are
controlled via
XACML.
Custom
policies can
be created,
and policies
can be
nested
logically.

The need to hold down ctrl
while adding members to
groups is a little risky - too
easy to deselect members.

2

7.6.1.2 Manage user restrictions - Demonstrate multiple levels of access
restrictions for NIH employees and general public based on licensing terms,
embargo periods, IP range restrictions, workstation access, and other
possible legal restrictions.

7.6.1.2,
7.6.1.3

A XACML
policies can
be written to
allow or deny
access at
every level of
object
aggregation,
using IP
range,
inactive/delet
ed status of
datastreams,
etc. Fedora
supports
LDAP simple
user/passwor
d out of the
box, but
other
sources can
be
configured.

Access restrictions to
communities are granular
but not as visible as we
would like. AD integration
is very attractive.

2

62

7.6.1.4 Manage user settings - Demonstrate access settings allow staff to add or
edit descriptive metadata

7.6.1.4 A XACML
policies can

Granular, role-based
access to add or edit

1

be written to
allow or deny

descriptive metadata. This
takes some up-front

access at the configuration, but works
datastream
level.

OK.

Metadata
editing
requires the
Fedora
client.

7.6.1.7 Audit users - Demonstrate access mechanisms can identify individual
users and maintain audit log of user actions.

7.6.1.7 A Every
change to a

Premis event synopsis is
viewable in the public view,

2

datastream more detailed log is
can be
versioned

available.

with audit
trail record.

7.6.1.5 Perform maintenance tasks - Demonstrate maintenance access including
adding new files, manipulating images, editing metadata, performing format

7.6.1.5 A Fedora
allows

Fez allows adding new files
and editing metadata.

1

conversions/migrations, and troubleshooting system problems. adding files, Image manipulation and
and files can
be

format conversion is not
directly supported, but Fez

manipulated can manage content after it
via
disseminator

has been externally
manipulated or converted.

s. Some
troubleshooti

System troubleshooting is
excellent, with a very

ng will thorough sanity checker to
require the
client or

detect common installation
problems. Run-time errors

command are saved to the log and
line actions. can be optionally sent to

the browser, with
configurable levels of error
detail (time, object, method,
parameters).

63

7.6.1.6 Manage system rights - Demonstrate ultimate system rights access for 7.6.1.6 A Some admin The ability to add users or 2
NLM system administrators and programmers. access is change user privileges can

controlled by be isolated to users with
database specific application
and OS administrative privileges.
accounts, but There is also a Community
Fedora user Administrator role. Rights
privileges are are stored in the Fez DB.
controlled via
the XACML
policies.

7.6.1 Access - Coordinate Access Activities - Rights/Data Control of Objects A

7.6.1.8 Manage access rights - Demonstrate access rights and conditions to
materials and storage directories provide for a combinational of
create/write; edit; read; delete privileges.

7.6.1.8 A Granular
access
control to
objects\datas
treams\disse
minators or
aggregates\r
epository-
wide policies
via XACML.
Custom
policies can
be created,
and policies
can be
nested
logically.

Editing security options at
the community, collection
and item level appears
intuitive and powerful, but
we have been unable to
successfully test most of
this area.

2

7.6.1.9 Manage metadata rights - Demonstrate access rights may be associated
with the metadata relating to an individual object

7.6.1.9 A Granular
access
control to
objects\datas
treams\disse
minators,
including
metadata
datastreams,
via XACML
policies.

Access to the object's
record should be
controllable. Unable to test
this successfully with
granular permissions.

2

7.6.1.1
3

Manage relationships - Demonstrate access rights and conditions can be
inherited from a parent object to any child object.

7.6.1.1
3

A XACML
policies can
utilize the
RELS-EXT
values to
allow or deny

Security settings allow for
parent-child propagation of
security values.

2

access.
7.6.1.1
4

Manage relationships - Demonstrate access rights and conditions can be
assigned to an object on an individual or group basis at same time.

7.6.1.1
4

A XACML
policies can
be assigned
to a content
model or by
PID.

Child objects can inherit
parent access controls or
have their own independent
controls. As with 7.6.1.8,
this has not been
successfully tested.

1

64

7.6.1.1 Automated retrieval - Demonstrate objects in the repository are accessible 7.6.1.1 A Automated Automated retrieval is not 1
6 for data mining or automated retrieval. 6 retrieval is

not
facilitated,
but
comprehensi
ve indexing
of metadata
and fulltext is
available
with indexing
plug-in.

facilitated, but
comprehensive indexing of
metadata and fulltext is
available with indexing
plug-in.

7.6.1.1 Metadata access - Demonstrate access to deleted and retracted metadata 7.6.1.1 A Fedora Versioning of underlying 1
7 is retained. 7 supports

write-once,
where any
changes to
datastreams
are
versioned.

datastreams is delegated to
Fedora. Metadata,
attached files and
hyperlinks can be
versioned through Fez.

7.6.1.1 Metadata harvesting - Demonstrate metadata harvesting following the 7.6.1.1 A Fedora Fez can utilize the Fedora 1
8 OAI-PMH guidelines. 8 includes an

OAI provider
to expose
content for
harvesting.
Recently
rewritten for
Fedora 3.0.

OAI provider.

7.6.1.1 Access rights - Demonstrate access rights and conditions of use are 7.6.1.1 A XACML Rights can be applied per 2
0 applied to each digital object and its related metadata and are machine 0, policies are datastream, object and

readable and actionable. 7.6.1.1 machine- higher-level aggregations.
1 readable by

design.

7.6.1.1 Access conditions - Demonstrate access conditions are specific to a 7.6.1.1 A Policies can Rights can be applied per 2
2 digital object. 2 be applied at

the
datastream
level and all
higher
aggregations
of content.

datastream, object and
higher-level aggregations.

65

7.6.1.1 Free/Restricted access - Demonstrate free (items available via 7.6.1.1 A XACML Access controls are 2
5 internal/external delivery mechanisms) and restricted access (access 5 policies can granular (in theory, unable

permission must be satisfy various criteria) status for objects, files, be written to to test successfully). No
metadata, etc. allow or deny "embargo" logic is present.

access at
every level of
object
aggregation,
using IP
range,
inactive/delet
ed status of
datastreams,
etc. Policies
should be
able to
accommodat
e embargo
logic
("moving
wall").

7.6.1 Access - Coordinate Access Activities - Search and Retrieval A

7.6.1.1 508 compliance - Demonstrate the search interface is web-accessible and 7.6.1.1 A Fedora's
9 Section 508 compliant. 9 thick client

does not
appear to be
Section 508
compliant.
However,
NLM staff
could use
alternative
methods for
ingesting and
managing
content such
as running
UNIX
commands
or via a Web
UI. Section
508
compliance
is a design
goal in any
upcoming UI
development
.

1.5
product, so it is not bound
by the Section 508
requirements. Since the
product is open-source,
NLM could easily tweak the
HTML templates, etc. to
create accessible UIs, etc.
were feasible.

Fez is an Australian

7.6.1.2 Search features - Demonstrate search includes: metadata, full-text, 7.6.1.2 A Metadata No explicit "or" searching in 1
0 standard boolean, proximity, "more like" this" 0, searching our environment, but UQ

7.6.1.2 with some has it. Lots of metadata
1, operators, searching, with wildcards.
7.6.1.2 less GUI No proximity or "more like".
2, than Fez.
7.6.1.2 GSearch
3, supports full
7.6.1.2 text indexing
4 and

66

searching,
proximity.

7.6.1.2
5

Search results display - Demonstrate search results display includes date
sort; relevancy ranking; alpha by author or source.

7.6.1.2
5

A no custom
ordering of
results.
Default order
is by PID.

No Author or source, but
date, relevance, title,
description.

2

7.6.1.2
6

Relevancy ranking - Demonstrate whether relevancy ranking can be
manipulated via system as well as user defined settings.

7.6.1.2
6

A n/a Not accessible through
admin interface.

0

7.6.1.2
9

Federated search - Demonstrate federated searching of different
repository sites.

7.6.1.2
9

A Can search across all or
select
communities/collections via
advanced search.

2

7.6.1.3
0

Advanced search - Demonstrate advanced search includes search history;
saved searches; saved citation lists/bibliographies; alerts; various functions
and formats; dynamic selection of delivery media without recreating search
query.

7.6.1.3
0

A none of
these
functions are
present

Can save searches as RSS
feeds,

1

7.6.1.3
1

Display formats - Demonstrate a variety of standard display formats are
provided and whether they are customizable by user

7.6.1.3
1

A Fedora lets
you select
the fields to
display.

Can be saved as XML,
RSS, citation-only. Not
customizable by user.

1

7.6.1.3
2

Alternate search interfaces - Demonstrate availability of alternate search
interfaces for mechanisms such as handhelds and PDAs.

7.6.1.3
2

A 0

7.6.1.3
3

Object access - Demonstrate access to the appropriate copy of the
identified item (text, image, video, etc.)

7.6.1.3
3

A Datastreams
have no
preference.

Unclear how to identify the
appropriate datastream,
although one is highlighted.
Can identify differences in
datastream descriptions.

0

7.6.1.3
4

Library holdings - Demonstrate integration of search results with library
holdings.

7.6.1.3
4

A 0

7.6.1.3
5

Response time - Demonstrate acceptable response time. 7.6.1.3
5

A Response
time is
acceptable,
within our
test
environment

Response time is
acceptable, within our test
environment and limited
collection.

1

67

and limited
collection.

7.6.1.3 External search engines - Demonstrate searching by outside search 7.6.1.3 A so far,
6 engines such as usa.gov, Google, and Yahoo. 6 evidence

suggests
only library
web pages
with a
"browse
view"
external to
Fedora are
spidered.

7.6.1.3 External system access - Demonstrate external access to other 7.6.1.3 A Fedora has a
7 repositories or systems performing web harvesting functions. 7 built-in OAI-

PMH
Provider
Interface,
and all
objects have
a compliant
DC record.
Only the DC
metadata
may be
disseminated
, however.

7.6.1.3 Language support - Demonstrate how multiple languages and non-Roman 7.6.1.3 A Chinese
8 scripts are supported in search, retrieval and display. 8 characters

do not
display in
test record
(fedorans:13
7).

7.6.1.3 Versioning - Demonstrate access to all versions of digital objects in the 7.6.1.3 A Fedora
9 repository is provided. 9 objects can

be versioned
at every
level,
including
disseminator
s.

uq.edu's espace browse 1
pages appear to be
indexed by Google

Fez could delegate the 1
OAI-PMH service to
Fedora.

Chinese characters 1
displayed in search results
(fedorans:137), but not
searchable.

All versions are accessible, 2
but no versioning
functionality for uploaded
content. This is in the
works for a future release.

7.6.1.4 Search settings - Demonstrate system settings and user-defined settings 7.6.1.4 A Only default Only default system- 1
0 in the search functions are provided. 0 system- provided search settings

provided are offered.
search
settings are
offered.

7.6.2 Access - Generate DIP A

7.6.2.1 Integrate holdings - Demonstrate integration of search results with library 7.6.2.1 A No No functionality built-in to 0
holdings. functionality Fez for this.

built-in to

68

Fedora for
this.

7.6.2.2 Retrieval and notification - Demonstrate the generation function accepts a
dissemination request, retrieves AIP from archival storage and moves a
copy of the data to a staging area for further processing, and creates and
sends a report request to data management to obtain appropriate
metadata.

7.6.2.2,
7.6.2.3,
7.6.2.4

A AIP/DIP is
conceptual,
but the
search API
can result in
a list of any
and all
datastreams,
including all
metadata
associated
with the
object.

AIP/DIP is conceptual.
Search interface can
provide links to multiple
derivatives of an object, the
archival master and
associated metadata.

2

7.6.2.7 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.2.7 A Tomcat logs
can provide
disseminatio

Fez can track downloads
per file, but this is not
working in testing.

1

n requests
(according to
Indiana Univ.
DLP).

7.6.2.5 Response and delivery - Demonstrate that the prepared DIP response is
placed in the staging area and a message is generated and sent to
Coordinate Access Activities that the DIP is ready for delivery.

7.6.2.5 A This aspect
of OAIS is
not currently
modeled by
Fedora.
Fedora does

This aspect of OAIS is not
currently modeled by Fez.
Fez does not appear to use
a staging area but serves
requested content directly
from the repository.

0

not appear to
use a staging
area but
serves
requested
content
directly from
the
repository.

7.6.2.6 Storage retrieval - Demonstrate that Generate function accesses data
objects in staging storage and applies the requested processes if special
processing is required.

7.6.2.6 A No staging
storage area
per se, but
disseminator
s can
process the
master
file(s),
separating it
from the DIP.

No staging storage area
per se, and Fez
architecture inhibits the
disseminator functionality of
Fedora.

1 Disseminator layer of
Fedora is quite powerful and
flexible, but cumbersome to
configure in 2.2.3. Fez's
inability to leverage the
Fedora disseminators is a
big downside.

7.6.3 Access - Deliver Response A

7.6.3.1 Web-accessibility - Demonstrate the display interface is web-accessible. 7.6.3.1 A Fedora has a Fez is entirely web- 2
fairly limited accessible.
web interface
for retrieval.

69

7.6.3.2 Downloading - Demonstrate export function that provides XML output for
batch downloads

7.6.3.2 A Objects can
be exported
as METS
packages,
and some
individual
datastreams
are
downloadabl
e as XML.

Fez can export some (but
not all) metadata into XML.
It cannot then re-ingest
from the export output.
Export is intended for
spreadsheet manipulation
of metadata.

1

7.6.3.3 Saving content - Demonstrate users are allowed to save digital content to
a hard-drive, e-mail, and/or save search results.

7.6.3.3 A Files may be
downloaded.
There does
not appear to
be a function
for emailing
or saving
search
results.

Files may be downloaded.
There does not appear to
be a function for emailing or
saving search results.

1

7.6.3.5 System notification - Demonstrate a confirmation message is returned to
the Coordinate Access Activities section after response has been sent.

7.6.3.5 A This aspect
of OAIS is
not currently
modeled by
Fedora.

This aspect of OAIS is not
currently modeled by Fez.

0

7.6.3.6 Audit trail - Demonstrate an audit trail of all actions is created and stored. 7.6.3.6 A Tomcat logs
can provide
disseminatio
n requests
(according to
Indiana Univ.
DLP).

Fez can track downloads
per file, but this is not
working in testing.

1

7.6.3.4 Response request - Demonstrate a response request is received from
Coordinate Access Activities

7.6.3.4 A Demonstrate
d retrieval of
objects via
the UI
without
issue.

Demonstrated retrieval of
objects via the UI without
issue.

2

8.1 Metadata Requirements M
8.1.1 Metadata formats - Demonstrate that the system can accept metadata

associated with objects in at least the following formats: All NLM DTDs,
Dublin Core, MARC21, MARCXML, ONIX, MODS, EAD, TEI.

8.1.1 M/T T=3
M=3

T=3 Any metadata could be
added as a datastream;

M=3.

T=3
M=3

Fedora is completely
agnostic about what kinds of
metadata and number of
metadata objects that can
be assigned to any object

8.1.2 Metadata checks - Demonstrate the built-in checks on the incoming
metadata. Records not containing the minimally defined set of fields should
be flagged as problems, either to be returned to the submitter, or sent
locally for metadata enhancement.

8.1.2 M 3 3 3 Fedora would need an
additional tool to perform
checks.

8.1.5 Metadata updates - Demonstrate the ability to allow for metadata updates. 8.1.5 M 3 2.5 3 Fedora client only has one
template field for descriptive
title; actual object metadata
box can take anything just
need disseminator to do
something with it.

8.1.6a Metadata search and display - Demonstrate the ability to search and
display metadata (use of external tool possible).

8.1.6a M 3 2.5 3

70

8.1.8 PREMIS - Demonstrate standards compliance for PREMIS (use of external
tool possible).

8.1.8 M/T T=3
M=3

T=2 Fez limited. Fez won't
display Premis metadata if

it was added in Fedora.
M=2

T=3
M=3

Fez creates PREMIS
metadata for each object,
stored as Fedora
datastream in the object.

8.1.9 METS - Demonstrate standards compliance for METS (use of external tool
possible).

8.1.9 M/T T=3 Fedora
can ingest

METS SIPs,
and export
objects in

METS
format. M=3

T=1 Fez limited. METS
could be stored as a
datastream. M=2

T=3
M=3

Fedora can store METS
metadata as a datastream in
an object, e.g. to drive a
METS-based page-turner.

App A Descriptive metadata - Demonstrate that the minimum descriptive
metadata requirements described in Appendix A are accepted.

App A M 3 2 3

9.1 Additional Technical Infrastructure Requirements T
9.1.1 OAI-PMH - Demonstrate that the system can respond to OAI-PMH requests

as a data provider.
9.1.1 T 2 0 2 Fedora has a basic OAI-

PMH capability, and an
extended capability using
the optional OAI-Provider
tool (in the Fedora Service
Framework).

9.1.2 Z39.50 - By design analysis, confirm that the system can respond to data
requests using the Z39.50 standard.

9.1.2 T 0 0 0

9.1.3 SRU/SRW - By design analysis, confirm that the system can respond to
data requests using the SRU and SRW data access standards.

9.1.3 T 0 0 0 VTLS provides SRU/SRW
for Arrow project.

9.1.4 SOAP - Demonstrate that the system can respond to web service requests
using SOAP.

9.1.4 T 3 0 3

9.1.5 UNICODE - Demonstrate that the system supports UNICODE. 9.1.5 T 3 2 3 UNICODE filename not
displayed properly in Fez.
UNICODE file content
handled ok.

9.1.6 OpenURL - By design analysis, confirm that the system is compliant with
OpenURL.

9.1.6 T 0 0 0

9.1.7 Z39.87 - By design analysis, confirm that the system supports the Z39.87
image metadata standard.

9.1.7 T 0 0 0

Notes: 1. Subgroups: A=Access, M=Metadata, P=Preservation, T=Technical Infrastructure

 2. Score indicates the extent to which the test element could be demonstrated: 0=None, 1=Low, 2=Moderate, 3=High

3.
Preservation tests - These sections of the functional requirements are covered by Test Plan sections P1, P2, and P3, which were defined by the Preservation subgroup to facilitate testing.

4. Test elements having blue background are the subject of outstanding questions from the Access subgroup.

71

	1. Executive Summary
	2. Introduction and Working Guidelines
	2.1. Introduction
	2.2. Working Guidelines

	3. Project Methodology and Initial Software Evaluation Results
	3.1 Project Timeline
	3.2. Project Start: Preliminary Repository List
	3.3. Qualitative Evaluation of 10 Systems/Software
	ArchivalWare
	CONTENTdm
	DAITSS
	DigiTool
	DSpace
	EPrints
	Fedora
	Greenstone
	Keystone DLS
	VITAL

	3.4. In-depth Testing of 3 Systems/Software

	4. Final Software Evaluation Results
	4.1 Summary of Hands-on Evaluation

	5. Recommendations
	5.1. Recommendation to use Fedora and Conduct a Phase 1 Pilot
	5.1.1 Key reasons for Fedora

	5.2. Phase 1 Pilot Recommendations
	5.3. Phase 1 Pilot Resources Needed
	5.4. Pilot Collections

	Appendix A - Master Evaluation Criteria Used for Qualitative Evaluation of Initial 10 Systems
	Appendix B - Results of Qualitative Evaluation of Initial 10 Systems
	Appendix C – DSpace Testing Results
	Appendix D – DigiTool Testing Results
	Appendix E – Fedora Testing Results

