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Abstract 

Background 
 A Gene Reference Into Function (GeneRIFs) is a concise entry in an Entrez Gene record that 
summarizes novel information about the gene function or structure from scientific literature. 
Every year, the National Library of Medicine Index Section manually creates upwards of 80,000 
hyperlinked geneRIFs from articles indexed for MEDLINE. The creation of these hyperlinked 
geneRIFs is known as gene indexing. 

Objective 
To create a prototype application for assisting in gene indexing by identifying genes in citations, 
suggesting a link to the appropriate Entrez Gene record, and suggesting several candidate 
sentences from which to derive geneRIFs. 

Methods 
The scope of this project was limited to human genes, and the citations used in our development 
were extracted from 43 journals of human genetics indexed for MEDLINE between 2002 and 
2011. Rapid-prototyping was used to create an initial modular end-to-end application. Each 
module was then iteratively revised. Citations were filtered for gene indexing based on rules 
used by the Index Section and the presence of gene mentions in the citation. To avoid 
confounding non-human genes, abstracts that mentioned any non-human species were also 
filtered out for this prototype stage. For gene mention identification, we developed a dictionary-
based approach after lackluster performance from existing conditional random fields (CRF)-
based software. Candidate sentences for geneRIFs were identified with a classifier that we 
trained on a manually-annotated corpus of 1,987 sentences.  

Results 
We currently identify explicit mentions of human genes in citations with 88% recall and 84% 
precision.  We are able to identify and normalize them to the correct Entrez Gene record with 
86% recall and 82% precision. We are able to identify candidate geneRIF sentences with 76% 
recall and 64% precision.  

Conclusions 
Accurate identification and normalization of gene mentions in citations will allow automatic 
links to the correct records in Entrez Gene, and should represent a significant time-savings and 
potential cost-savings in gene indexing. This goal is well within reach for most human genes and 
human-only citations. We plan to improve gene mention identification and normalization by 
expanding our dictionary and combining it with previously developed CRF-based applications. 
Our work on gene identification and normalization has benefitted greatly from the availability of 
related research on this topic, much of it from NLM-sponsored competitions. While we are 
having moderate success identifying geneRIF candidate sentences, our slow progress reflects the 
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greater complexity of the task and the comparative lack of previous research in similar 
applications. Our contributions in this area represent a novel approach, and our manually 
annotated dataset will be a valuable resource to offer the research community. 

Introduction 
A Gene Reference Into Function (geneRIF) is a concise entry in an Entrez Gene record that 
summarizes novel information about the gene function or structure from scientific literature. 
Every year, the National Library of Medicine (NLM) manually creates upwards of 80,000 
hyperlinked geneRIFs from articles indexed for MEDLINE. The creation of these hyperlinked 
geneRIFs is known as gene indexing, and it is performed for most articles that focus on the basic 
biology of genes or gene products. Gene indexing has been performed by the Index Section since 
2002.  

The manual process involved in gene indexing is time consuming and detailed. Once an indexer 
has determined that an article is suitable, they use a special interface in the Data Creation 
Management System (DCMS) to perform the gene indexing. From here, they follow links to an 
external Entrez Gene interface, to manually search for each gene and species, and then import 
links for the relevant Entrez Gene records back into DCMS. There, they manually create the 
geneRIF annotation, usually using information directly from the abstract. This process is outlined 
in length in four Technical Memoranda from the Indexing Manual [1]-[4]. 

Our research group recognized many steps of this process as candidates for automation. A great 
deal of successful previous research has been done on automatically identifying gene and protein 
names in biomedical text [5]-[20], and normalizing those names to unique identifiers such as 
Entrez Gene IDs [6],[7],[17]-[20]. Some researchers have even attempted to automatically 
identify geneRIFs from MEDLINE abstracts, albeit with more limited success [26]-[28]. 
Building on this previous research, we sought to create a prototype program for assisting in gene 
indexing. We call this program the Gene Indexing Assistant (GIA). 

The GIA performs many tasks that will hopefully increase the speed and comprehensiveness of 
gene indexing. The prototype is built with a modular design, with each of four modules fulfilling 
certain gene indexing functions. 

1. Citation Filter 
This module evaluates MEDLINE citations with abstracts to determine whether or not 
each article is suitable for gene indexing. 

2. Gene Mention Identification 
This module finds all mentions of genes in the citations. Gene naming is highly variable, 
with many different names and abbreviations for each gene in use, and many genes with 
identical names or abbreviations. 

3. Gene Mention Normalization 
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This module attempts to normalize each gene mention to the correct Entrez Gene ID. It 
suggests links to the appropriate Entrez Gene records. This step is also affected by the 
ambiguity of gene names, as more ambiguous names as more difficult to normalize. 

4. GeneRIF Extraction 
This module identifies and suggests the most likely candidate sentences from which to 
derive geneRIFs. 

Accurate identification and normalization of gene mentions in citations will allow automatic 
links to the correct records in Entrez Gene. This alone should represent a significant time-savings 
and potential cost-savings in gene indexing. Our work shows this goal is well within reach for 
most human genes and human-only citations, while previous work indicates that success can be 
expected with additional species, as well. While we are having moderate success identifying 
geneRIF candidate sentences, our slower progress here reflects the greater complexity of the task 
and the comparative dearth of previous research in similar applications. Our contributions in this 
area represent a novel approach. 

Methods 
A rapid-prototyping philosophy guided the project. A modular end-to-end application was 
quickly created by first employing simple methods and existing resources. Each module was then 
iteratively revised. The process of creating each module is described below. A general overview 
of the system architecture can be found in Figure 1. 
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Figure 1: Gene Indexing Assistant Structure 

Citation Filter 
Citations are filtered for gene indexing based on the presence of gene mentions in the citation, 
rules used by the Index Section for which articles are suitable, and the requirements of this 
project.  

Index Section Rules 
The following list of relevant rules is adapted from Technical Memoranda [1]-[4]. The details of 
our implementation for each are noted where applicable.  

• Link articles in which the basic biology of a gene from an in scope organism is the 
primary point of the article. Do not create links for articles where the focus is genetic 
engineering, genetic databases, sample banks, population genetics unrelated to disease or 
function, and any topics other than the basic biology of the gene. In clinical articles, do 
not create links unless the focus of that article is on some new aspect of that gene. 

o We are currently unable to implement this set of rules effectively. We do discard 
citations that do not contain gene mentions recognized by the Gene Mention 
Identification Module, but we are not able to automatically detect the main focus 
of articles in an abstract way.  

• Do not create links for case reports with only a single patient 
o We are currently unable to implement this rule, but expect to be able to in the 

future. Case reports with only a single patient are considered insufficient evidence 
to create a genotype-phenotype link.  

• Review articles may be included only if they focus on a particular gene 
o We filter out any review articles that mention more than three genes. We may be 

able to refine this in the future. Obviously this filtering depends on the success of 
the Gene Mention Identification module.  

• Do not link news items, editorials or letters commenting on genes or proteins in another 
article.  

o We filter out all of these publication types. Although a very, very small 
percentage of these items may comment on a gene or protein not discussed in 
another article, they generally do not have abstracts from which we can work. 

• Restrict to organisms that are in the taxonomy list for Entrez Gene. 
o For our prototype, we are limited to humans only. The NCBI Taxonomy is used 

as a dictionary to filter out any citations that mention other species. These 
citations may be suitable for gene indexing, but our current program is not 
equipped to distinguish between genes from different species.  

• Restrict to abstracts with three or fewer genes, unless they are mentioned in the title 
o We do not currently implement this rule. It is designed to arbitrarily offer a limit 

on the number of geneRIFs created for a single article. 
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Additional Rules 
Additional rules were created for the purposes of this project. 

• Limit to citations with an abstract 
o Titles only do not offer sufficient text for processing 

• Limit to articles that do not contain any non-human species mentions 
o As mentioned above, all citations with non-human species mentioned are 

discarded. 
• Limit to articles in human-genetics journals from 2002-2011 

o The scope of this project was limited to human genes, and we required a test bed 
of citations about human genes exclusively. We began by selecting all the 
journals indexed for MEDLINE with the journal subject Human genetics. From 
these, we eliminated journals devoted to non-human species such as Journal of 
experimental zoology and those primarily concerning gene therapy, genetic 
counseling, or ethics such as Law and the human genome review. We queried the 
citations of the remaining journals in PubMed to determine the prevalence of 
confounding species, using the following 11 words for common model species as 
a heuristic: mouse, murine, yeast, fly, drosophila, cow, cattle, bovine, worm, 
elegans, and plant. Journals with fewer than 40% of their citations confounded by 
representative non-human species were selected to form our test bed. A total of 
105,255 citations were available from these 43 journals in the selected time 
period. From these, we randomly selected our training and testing materials.  

Gene Mention Identification 
Gene Mention Identification is a well-studied task in Named Entity Recognition (NER). NER 
seeks to extract from text any words or phrases from predefined categories such as genes, 
proteins, or diseases. Sponsored contests specifically targeting Gene Mention Identification, such 
as BioCreative 2 and 3, have been successful not only at attracting participants, but at spurring 
subsequent research [5],[7]. There are a number of barriers to building on previous research from 
this area, however.  

1. Many of these programs are not made public. Only a small fraction of the entries from 
the BioCreative challenges were made available 

2. Many of those made public are not open source, or are available only as web services 
3. Those made public may be difficult to implement due to lack of documentation and user 

support  
4. Those made public may not be updated regularly 

Since these competitions are intended to advance the state of the art, the resources derived from 
this kind of sponsored research is something that should be carefully considered in designing the 
competitions.  
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We identified a number of high-performing applications for Gene Mention Identification 
resulting from competitions and other research. Our list is likely not comprehensive. What we 
did find is represented in Table 1. 

Table 1: Gene Mention Identification Tools 

Tool Description Access Referenc
e 

Tools for Gene Mention Identification Only 

ABNER Problems with documentation 
Downloadabl
e 

[8] 

AIIA-
GMT 

Uses genia , Mallet/CRF++ Web service 
only 

[9] 

ando Unusual semi-supervised learning method Cannot locate [10] 
BANNER Problems with documentation Downloadabl

e 
[11] 

Biotagger 
(Penn) 

not recently updated Downloadabl
e 

[12] 

BioTagger
-GM 

Combination of four systems. Uses Genia, Mallet, 
SRDEF 

Build your 
own 

[13] 

lingpipe Lower-performing general system that can be 
trained to genes 

Downloadabl
e 

[14] 

NERbio Cannot locate Cannot locate [15] 
WCL 
BioNER 

A method for combining a variety of tools Build your 
own 

[16] 

Tools for Gene Mention Identification and Normalization 
GeNo Remote UIMA-AnalysisEngine--full gene 

normalization suite. Entity tagger is JNET. 
Web service 
only 

[17] 

GNAT Uses BANNER and LINNAEUS; cross species full 
suite 

Downloadabl
e or web 
service 

[18] 

moara Full suite, freely available, now integrated in U-
Compare 

Downloadabl
e 

[19] 

 

We originally attempted to simply use an existing tool for gene mention identification. We first 
selected BANNER, because it reported high scores compared to other tools on a variety of test 
collections. BANNER is also a relatively well-known application, due to its success and 
availability. We assumed that this would also make it easier to implement. Instead, we found that 
documentation on its functions was so insufficient as to render it virtually impossible to 
implement without assistance from its developers. We encountered the same problem with 
ABNER.  

We turned then to AIIA-GMT, which also scored well on test collections. AIIA is available as a 
simple web interface. It was always clear we would eventually need access to a complete 
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program, not just an interface, but this allowed us to experiment until another solution could be 
devised. We were unsatisfied with the performance of AIIA, specifically, with inexplicably 
missed identical mentions within the same abstract. 

In keeping with a rapid prototyping philosophy, we decided not to let the project become mired 
in the details of implementing and troubleshooting a previously created gene mention 
identification application. To ensure that we were intimately familiar with the workings of our 
program and had control over its shortcomings and development, we chose to create our own 
gene mention identification module. We developed a simple, dictionary-based approach which 
we eventually supplemented with additional rules and preprocessing.  

Dictionary-Based Gene Identification 
In our approach, words in a citation are simply matched to a dictionary of gene names. Our 
dictionary terms are based on gene designations from the following sources: 

• Human Gene Names from NCBI’s Homo_sapiens.gene_info.gz [21]file which provides 
Homo sapiens-specific gene information.  We are using the following fields: tax_id, 
GeneID, Symbol, Synonyms, description, and Other designations. 

• Discontinued Gene Names are from NCBI’s gene_history file [22].  This file covers all 
species, but we have retrieved just the human-specific genes using the tax_id field 
(9606).  We then used the first four fields (tax_id, GeneID, Discontinued GeneID, and 
Discontinued Symbol) to identify the discontinued genes and link them to their current 
replacements using the “GeneID” field. When available, this field links to the current 
gene that replaced the discontinued gene. 

• Online Mendelian Inheritance in Man (OMIM) numbers are from NCBI’s mim2gene file 
[23].  This file provides links between the OMIM number and their corresponding gene 
identifier.  For creating the dictionary, we ignored the “phenotype” entries and focused 
solely on the “gene” entries.  Using the list of human genes identified above, we filtered 
this file to identify only the human-related OMIM numbers. 

Once we had built a comprehensive list of gene names from the NCBI resources, we removed 
the duplicates and then filtered out some misleading or ambiguous gene names.  We removed 
any gene name that ended with any of the following terms: ‘disease’, ‘syndrome’, or 
‘susceptibility’.  For example: 619509|Wittwer syndrome, 7439|Best disease, and 220296|cancer 
susceptibility.  In text, our program cannot differentiate between mentions of these phenotypes 
and the genes with identical names. However, in most cases it is the disease and not the gene, so 
performance is currently improved by ignoring these mentions. 

The dictionary was then expanded with variants of each term to account for author preferences in 
punctuation and spacing. Variants were created for gene names that have a single dash in them.  
The variant generation algorithm creates a version replacing the dash with a space, and another 
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variant with the dash simply removed.  For example, “cortexin-2” would generate “cortexin 2” 
and “cortexin2” as variants.  Variant generation will be improved in the next phase.  One 
possibility will be to use one of the existing tools with a more advanced variant generation or 
identification algorithm. 

Each resulting entry in the dictionary is linked to its originating Entrez Gene ID. In the case of an 
entry that is common to multiple Entrez Gene records, all relevant IDs are associated with the 
dictionary entry. The final list was than sorted into longest to shortest gene name order to 
facilitate identifying the longest possible matches in the text before identifying a component of 
the gene name. 

Sentences in an abstract are detected and tokenized using MetaMap [24]. We initially wrote our 
own simple sentence detector and tokenizer, but implemented MetaMap on a subsequent revision 
of the module. MetaMap is used for sentence detection, tokenization, acronym and abbreviation 
identification, as well as during geneRIF extraction, benefitting the entire GIA application.  

Gene Mention Normalization 
Gene mention normalization links each gene mention to the appropriate Entrez Gene ID as a 
unique identifier. Normalization was a low priority for this prototype and did not receive 
significant revision from the first iteration of this module. Thus, our current normalization step is 
very simple. Since our dictionary is primarily built from Entrez Gene, all of our dictionary terms 
are linked back to their originating Entrez Gene records. Therefore, if we find a mention at all, 
we have also found at least one Entrez Gene ID. If only one Entrez Gene ID is returned, the 
mention is normalized to that as the only possible option. In the case of ambiguous terms, a list 
of all matching Entrez Gene IDs is returned, and we disambiguate between them. 

When we have multiple possible IDs, we currently use a very simple strategy for 
disambiguating: We determine whether the match is an official name or official abbreviation, 
versus a lesser-used type of synonym. The decision process follows this sequence of preferences: 

1. Prefer an official name or abbreviation 
2. Prefer a mention that corresponds to an official name identified elsewhere in the article.  
3. Prefer a designation from the “Synonyms” field  
4. Prefer a designation from the “Description” field 
5. Prefer a designation from the “Others” field 
6. Otherwise select the first mention in the list 

GeneRIF Extraction 
GeneRIF extraction is the process of finding the sentences in the abstract most likely to be 
selected by the indexer as geneRIFs for each gene mention. At the moment, our project is 
focused on simply identifying all  the candidate sentences, and has not yet attempted to rank 
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them or link them to specific gene mentions. This module will suggest the best sentences to the 
indexer. 

Original Methodology 
We initially hoped that existing geneRIFs and their originating abstracts could be used as a gold 
standard to train a geneRIF/non-geneRIF classifier. We excluded geneRIFs that did not originate 
from NLM indexers, as they tend not to meet the Index Section guidelines. Existing geneRIFs 
that originate from indexers were obtained from a file kept by DCMS. These geneRIFs were 
compared to their originating abstracts with a string matching algorithm, to identify the sentences 
from which the geneRIFs were derived. Thus, a corpus of “geneRIF sentences” and “non 
geneRIF sentences” was formed from these abstracts.  

These sentences were analyzed for their position in the abstract, as well as the frequency of 
unigrams, bigrams, trigrams, and quadgrams within them.Very few predictive features were 
identified. The results of these analyses are presented and discussed in more length in the Results 
section.  The factors that led to the failure of this tack were found to be inherent to using existing 
geneRIFs as a gold standard. Our insights from this setback shaped the strategy of our 
subsequent approach.  

Current Methodology 

Classes 
Three types of classes were devised, as shown in Table 1. GeneRIF classes are based on the 
Gene Indexing guidelines as outlined in Technical Bulletins [1]-[4] and our observations from 
existing text. Discourse Classes represent the rhetorical part of the abstract the sentence is in, like 
the background or the results, and are based on the Structured Abstract components used by 
NLM [25]. Claims Classes represent whether or not the sentence makes a scientific claim, and if 
so, whether that claim is an established fact or something proved by the author. Our hypothesis 
was that Discourse and Claims Classes could be used to enhance the prediction of geneRIF 
Classes during classification. The full guidelines used to define classes and determine tagging are 
available in Appendix A: Guidelines for Class Assignment. 

Table 2: Classes for Annotation 

GeneRIF Classes Discourse Classes Claims Classes 
• Expression • Title • Established Claim 
• Function • Background • Putative Claim 
• Isolation • Purpose • Non-Claim 
• Reference  • Methods  
• Structure • Results  
• Non-geneRIF • Conclusions  
• Other   
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Dataset Creation 
The abstracts in our training and test sets were selected randomly from the test bed described 
under the Citation Filter’s Additional Rules. From here, 373 abstracts were selected for the 
training set, and 151 for the test set. All sentences were processed by the Gene Mention 
Identification module to tag gene mentions. JCS then manually tagged for the incorrect and 
missed gene mentions, and marked each article for suitability for gene indexing.  

For abstracts considered suitable for gene indexing, JCS and ADK independently coded all 
sentences with at least one geneRIF Class, at least one Discourse Class, and one Claims Class. A 
total of 2986 sentences were coded with these classes. After calculating the intercoder reliability 
of the two coders, the discrepancies were reconciled by discussion to gain consensus. Both the 
original data and reconciled data are available as supplementary data. 

Feature Evaluation 
The features selected for analysis reflect both standard practice for text classification and 
literature and observations specific to geneRIFs. 

Unigrams and bigrams 
The occurrence of N-grams is a standard feature for text classification. 

Sentence Position 
Sentence position is well-known to influence the likelihood of a sentence being a geneRIF. 
Previous analysis has shown a high percentage of geneRIFs come from the title or the final 
sentences of an abstract [26], [27]. Our own analysis of human-related geneRIFs in MEDLINE 
confirmed this, as shown in Table 3.  

Table 3: GeneRIF Origin Sentences 

 Number of geneRIFs Percent of geneRIFs 
Total geneRIFs Matched* 248,371 100% 
Exact Matches Found* 173,586 70% 
Total Found in Last Sentence of AB 110,333 44% 
Total Found in Middle Sentences of AB 56,641 23% 
Total Found in Title 39,732 16% 
Total Found in Penultimate Sentence of 
AB 

37,300 15% 

Total Found in First Sentence of AB 4,365 2% 
*Matches are based on string similarity. A geneRIF was considered matched to a sentence at a 
threshold of 60% similarity. Exact matches are based on a complete match between the geneRIF 
and a sentence or part of a sentence. 

Gene and Disease Names  
We suspected that the presence of disease and gene names in a sentence would be predictive, 
because our casual observation was that sentences summarizing novel clinical findings often 
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contained both. We used MetaMap to identify disease names in the sentence, and allowed the 
classifiers to attempt to construct rules taking them into account. Analysis was performed using 
both the actual names present in the text, and also with the actual text replaced by the generic 
representative strings “xxxgenexxx” or “xxxdiseasexxx.” The latter was attempted to see if 
generalized mentions of genes and diseases created more effective rules for the classifier than the 
specific names. 

Discourse Classes and Claims Classes 
Gobeill et al achieved some success using Discourse Classes to identify geneRIFs [27]. This is 
expected, because non-referential geneRIFs must be based on novel findings, and most novel 
findings will be located in the title, results, and conclusions. Gobeill et al trained their Discourse 
Classifier using existing categories in structured abstracts, and tested its performance on 
structured abstracts with the labels removed. They suggested that in addition to Discourse 
Classes, that tags distinguishing putative from established claims might also be helpful. Because 
we used a hand-tagged dataset of both structured and unstructured abstracts for training and 
testing, we were able to incorporate both Discourse Classes and Claims Classes into our analysis.  

Classifiers 
A set of open-source standard classifiers from Weka [29] were trained and tested on our data, 
including Naïve Bayes, Support Vector Machine, and AdaBoost (for binary classification only). 
From the complete set, 1,987 sentences were used for training, and 999 were used for testing.  

Results and Analysis 

Citation Filter 
We have found it problematic to evaluate the performance of the filter. The filter we are 
currently employing for the purpose of the project is different in important ways from the filter 
that would eventually be implemented in production. For example, rules like filtering out all non-
human species mentions are implemented just for the development of this prototype. The current 
filter is also far less sophisticated and sensitive than what we would expect to implement in a 
production environment. A thorough evaluation of the current filter would be premature and 
time-consuming, so we have presented only some preliminary results here. 

Additionally, there is difficulty with what results to include in such an analysis. Strictly 
speaking, we are “filtering” out the majority of MEDLINE, but this insight does not give us 
meaningful numbers on our performance. Similarly, evaluating the performance of the filter 
where it is based on hard-and-fast rules like the acceptable publication types does not offer 
meaningful insight. Therefore, the analysis that we choose to present here handles only those 
citations where the filter could reasonably be expected to make a “mistake.” The analyzed 
citations for this evaluation therefore include just the citations included by the filter in our 



14 
 

dataset, plus a proportional number of citations filtered out for criteria based on gene mentions 
(approximately an extra 20%). 

Our ability to evaluate even the current filter is hampered by the necessity of a non-expert 
guessing what an indexer would deem appropriate for gene indexing. The coder marking 
citations as suitable or non-suitable for gene indexing is not an indexer. JW did graciously 
review the citation coding from the test set for our accuracy on this count. We disagreed on 12 of 
the 151 citations, putting our agreement at 79%. However, our disagreements did not 
significantly alter the ratio of suitable to unsuitable citations in the set, as shown in Table 4. 
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Table 4: Citations from the Test Set Evaluated for Gene Indexing by Two Coders 

 Suitable Unsuitable 
JCS 100 51 
JW 98 53 

 

In addition to the test set, the original coder looked at an additional representative set of citations 
rejected by the filter for absence of gene mentions. Of these 31, four contained missed gene 
mentions and were suitable for gene indexing. Thus, based on this small analysis set of 182, the 
current filter has fairly low precision (around 65%) and high recall (around 96%). 

We also used these results to estimate what percent of articles are correctly receiving gene 
indexing. Note that two citations were eliminated from this set because they contained non-
human species mentions that the filter failed to detect. The filter is currently intended to filter 
these out, but only for the purposes of this project. Therefore, including these in this analysis 
would have misrepresented the efforts of the Index Section.  

Table 5: Gene Indexing on a Sample of Filtered Abstracts 

Citations Instances Received geneRIFs 
Unsuitable for Gene Indexing  53 4 
Suitable for Gene Indexing 96 60 

 

Only 60 of the 96 suitable citations have actual geneRIFs associated with them. (See Table 5) 
This suggests that the remaining 36 were not correctly processed for gene indexing. Six of those 
36 were from 2002, the first year that gene indexing was practiced, and that year is likely 
incomplete. However, the GIA might encourage comprehensive treatment by suggesting those 
other 30 that are being missed right now. 

Four of the 53 unsuitable citations had geneRIFs associated with them. JW reviewed these and 
verified that three of those four should not have been gene indexed. The remaining article would 
not have been gene indexed based only on the abstract, but qualified when examined in full text. 
It is possible that better filtering could also prevent some undesirable entries from being created, 
though this is a very small problem in comparison. 

However, reaping the benefits of more comprehensive gene indexing will depend on improving 
the filter specificity. Of the original 151 citations, 52 were ultimately unsuitable for gene 
indexing. If more than a third of the GIA suggestions are bad, indexers will probably ignore 
them. Worse, indexers might be slowed by stopping to evaluate so many bad suggestions.  

Gene Mention Identification 
The Gene Mention Identification module currently performs at 88% recall, 84% precision, and 
an 86% F1-measure. Please refer to Table 6. 



16 
 

Based on data available from the literature, we estimate our current results to be similar to other 
high-performing gene identification resources, but we have not yet run direct comparisons of 
different tools on identical test sets. Since we plan to continue to develop this module, we will 
have additional opportunities to run such comparisons. 

The current results represent significant improvement from the original incarnation of this 
module. The dictionary alone had mediocre performance on the original training set, with 
precision originally lower than 60%. Performance was improved through analysis and 
refinements discussed below.  

Table 6: Identification Results 

Mention Type Instances 
Correct Mentions 1,014 
Missed Mentions (False Negatives) 143 
Bad Mentions (False Positives) 198 

 

Bad Mentions 
We focused on reducing the bad mentions, since our precision was quite low. We reviewed the 
bad mentions in the training set, attempting to categorize them according to the origin of the 
errors. A few of the highlights of this analysis are below. 

Identical Abbreviations 
A large percentage of the errors stemmed from abbreviations for things like diseases and 
experimental techniques that were identical to abbreviations for gene names. Implementing 
MetaMap alleviated much of this problem. MetaMap contains an algorithm for identifying 
author defined acronyms or abbreviations where the short form is found within parentheses 
immediately following the long form. Using MetaMap, we are able to match most abbreviations 
in the abstracts to their long forms. We then expand any subsequent use of that abbreviation in 
the text, to replace it with the long form. This technique alone eliminated about 70% of the bad 
mentions during development with the training set. This represented a large gain in performance, 
despite introducing a few additional missed mentions. These came from cases where we had 
recognized the original abbreviation, but did not recognize the long form. 

Common Words 
We created a list of ordinary words that are also gene designations, like “great,” “simple,” and 
“sky.” The identification of these words triggers a case-sensitive check that most of the text is 
not subject to. Only if the word matches the case-specific use for the gene designation does it get 
marked as a mention. We do not use case-sensitive criteria for all gene designations 
indiscriminately, since minor author variations would cause us to miss too many genes. Although 
this manual-identification approach was effective, it is not likely scalable for use with additional 
species. 
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Domain Specific Rules 
We devised a number of additional rules to handle specific mentions. For example, CGH is a 
gene, but is also a commonly used microarray. If the words “array” or “microarray” appear on 
either side of CGH, we do not consider it a gene mention. Similarly, we do not count “insulin” 
when it appears in “insulin-resistant” or “insulin-resistance.” Manual analysis yielded many such 
rules. Although we currently have these rules implemented, this approach is again not scalable to 
additional species, because of the extensive manual review it requires.  

Disease Names 
One of the most intransigent identification problems is caused by diseases that share a name with 
a gene. A few examples are neurofibromatosis type 1, multiple sclerosis, and Rett syndrome. 
These names are identical between the disease and the gene, and are therefore impossible to 
resolve with a simple dictionary match. Like the common words and domain-specific rules 
above, these disease names point to the need for a context-sensitive identification method. This 
could theoretically be provided with a statistical tool, albeit imperfectly. 

Missed Mentions 
We also reviewed the missed mentions, to identify additional possible improvements. The bulk 
of these error types are covered in the list below. We were able to address some of these with 
changes to our application and dictionary, and others may be addressed by future development or 
by the use of statistical methods. 

• Lexical variants 
o Punctuation or spacing is different than that in the dictionary. Most of these errors 

have been corrected by adding additional variants to the dictionary. 
• Symbolic variation 

o Different abbreviations or numerals are used, such as “a” for alpha or “B” for beta, or 
different Roman and Arabic numerals. 

• Partial Tagging 
o Only part of the full gene name was recognized. Ex: “alcohol dehydrogenase” 

mentioned and official name “alcohol dehydrogenase IB” missed, even though it 
appears in the text. This problem has been mostly corrected using a length-based 
matching system, where longer matches are preferred. 

• Name is too general 
o The name found is not specific enough to match an Entrez Gene record. For example, 

“hemoglobin” when there are various types such as beta, gamma B, and gamma A. 
• Rearranged name components 

o A similar synonym appears in the Entrez Gene record, but it is rearranged compared 
to the one we missed. For example, the official name: hydroxysteroid (11-beta) 
dehydrogenase 1 was mentioned as: 11beta-hydroxysteroid dehydrogenase type 1. 

• Synonym dissimilar 
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o A synonym appears in Entrez Gene, but it was too dissimilar for us to recognize due 
to the addition of extra words or other changes. 

• Name unlisted 
o The gene mention was totally unrecognizable in Entrez Gene. 

• Sequences 
o Gene mentions were missed because multiple genes were listed in sequence. Ex: Cox 

1-4, with only Cox 1 identified. Or Cox 1, 2, and 4, with only Cox 1 identified. We 
may be able to identify and expand these kinds of sequences during preprocessing, in 
a manner similar to the abbreviation matching and expansion we currently employ. 

Gene Mention Normalization 
We are able to identify and normalize gene mentions in our test set with 86% recall, 82% 
precision, and an 84% F1-measure. To provide some sense of the performance of this module 
excluding the errors that originate with identification, we also looked at the performance for just 
the correct mentions—that is, just the mentions that refer to a real gene of some kind, excluding 
the bad mentions and the missed mentions. For correct mentions only, we are able to normalize 
98% correctly. Our high overall performance reflects two things: the simple effectiveness of the 
dictionary approach in the majority of cases, and the low incidence of ambiguity in our test set: 
only 4% of the mentions are ambiguous, having more than one possible Entrez Gene ID.  

Table 7: Disambiguation Results 

Mention Type Instances 
Overall Correct Mentions  998 
Overall Missed Mentions (False Negatives) 159 
Overall Bad Mentions (False Positives/Bad Normalization) 214 
Ambiguous Correct Mentions 41 
Ambiguous Bad Mentions (False Positives/Bad Normalization) 16 

 

For the ambiguous mentions, we correctly normalize only 61%. This low performance on 
ambiguous mentions reflects the relative lack of priority given to developing this module. 
Considering only a few days were spent developing our rather unsophisticated approach, and the 
many options available for future improvement, we are pleased with these results. 

GeneRIF Extraction 

Original Methodology 
As reported above in Methods, we originally planned to use existing geneRIFs to train a 
classifier. However, this approach did not succeed, as the features we examined were not 
sufficiently predictive. Closer manual examination of the geneRIFs and their originating articles 
revealed some important insights.   
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Multiple sentences in an abstract could be geneRIFs 
Contrary to our expectations, geneRIFs are not necessarily limited to a single sentence. A 
significant percentage of geneRIFs contained multiple full sentences or parts from multiple 
sentences combined by the indexer. Thus, multiple sentences in a citation can contain 
information worthy of geneRIFs. In fact, examining the abstracts, we realized that sometimes 
different sentences would paraphrase the same summarizing information, such as the title and 
conclusions.  If one of those sentences is a geneRIF, surely the other could also have met the 
criteria for a good geneRIF. These insights led to the realization that our non-geneRIF corpus 
was likely filled with examples of sentences that could be geneRIFs or contribute to geneRIFs. 
This helps explain why it is difficult to find predictive features from the datasets we were using. 

Types of geneRIFs have different features 
Because we had strongly expected to find predictive n-grams, but found almost nothing, we 
examined the text of many geneRIFs manually to redefine our expectations for distinctive 
linguistic features geneRIFs might have. This examination revealed that geneRIFs have multiple 
latent types, based on the information they contain. These are also implied by the Index Section 
technical bulletins [1]-[4]. These types appear to have different features, including the n-grams 
they are likely to contain. Attempting to train a classifier to identify them as a single class 
(geneRIFs), probably forced the classifier to accept too many combinations of these features to 
make effective distinctions. 

Selected geneRIFs may be suboptimal or inconsistent 
During this analysis, we also noticed some geneRIFs that were not derived from the sentences 
we would have selected as those containing the most vital information.  With many possible 
types of information possible in a geneRIF, there may be many sentences in an abstract that are 
in scope and unrelated to one another, detailing different findings on the same gene. We realized 
that the indexing guidelines for creating geneRIFs do not outline clear criteria for prioritizing the 
information that should be preferred for a geneRIF. This likely leads to significant variability 
between indexers, who may use different mental concepts of priorities to create their geneRIF 
annotations. 

Current Methodology 
The insights above made clear that all possible geneRIF sentences in an abstract needed to be 
identified for us to study them successfully, not just the one or two sentences ultimately selected. 
Thus, we decided to create a manually annotated dataset as described above in Methods, in order 
to train more sophisticated classifiers. Presented below are the most relevant high-performance 
data from the classification experiments. More complete results are available in the supplemental 
data for this project.  

GeneRIF Classifier 
The ultimate goal of this module is to distinguish between the geneRIF and non-geneRIF 
sentences. For this type of binary classification, our best results are an F1 measure of .70, which 
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can be derived from Naïve Bayes (precision of .64 and recall of .76) or SVM (precision of .70 
and recall of .70). 

Table 8 shows the cumulative contributions of each feature currently being used by the classifier, 
while Table 9 gives more detail on the features tested. In Table 9, “Position” refers to the 
position of the sentence in the abstract. “Unigrams” and “Bigrams” are simply n-grams the 
classifier has identified as relevant. “Renamed Genes/Diseases” refers to sentences where genes 
and disease names have been replaced with generic identifier, as described in the methods.  
“Discourse” and “Claims” refers to using the results from the Discourse and Claims Classifiers 
as features. The final two rows of the table show the results using the manually annotated 
Discourse and Claims Classes, instead of those derived from the classifiers. 

Table 8: Classifier Improvement from Additional Features 

Features Used Recall Precision F1 
Position in abstract .33 .61 .42 
+unigrams .61 .59 .60 
+bigrams .65 .60 .62 
+disease and gene names .78 .64 .70 

 

Table 9: Binary GeneRIF Classification 
 

Naïve Bayes SVM 
Features Precisio

n 
Recall F1 Precisio

n 
Recal
l 

F1 

Position (P) 0.61 0.33 0.42 0.61 0.33 0.42 
Unigrams (U) 0.59 0.61 0.60 0.65 0.52 0.58 
P+U 0.60 0.65 0.62 0.65 0.61 0.62 
Bigrams(B) + P+U 0.63 0.69 0.66 0.68 0.698 0.688 
Renamed Genes/Diseases (D) 
+P+U 

0.61 0.63 0.62 0.66 0.58 0.62 

Renamed Genes/Diseases(D) 
+B+P+U  

0.64 0.76 0.70 0.70 0.70 0.70 

Discourse +P+U 0.62 0.65 0.64 0.67 0.61 0.64 
Discourse +B+P+U+D 0.65 0.72 0.68 0.66 0.67 0.67 
Claims +P+U 0.70 0.56 0.62 0.75 0.61 0.67 
Claims +B+P+U+D 0.69 0.63 0.66 0.73 0.58 0.64 

Using Hand-Annotated Discourse and Claims Data 
Discourse +B+P+U+D 0.74 0.87 0.80 0.78 0.92 0.85 
Claims +B+P+U+D 0.82 0.78 0.80 0.90 0.80 0.84 
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As shown above, using classifier-generated Discourse Classes or Claims Classes as features to 
identify geneRIFs resulted in a drop in performance, due to the mediocre performance of both 
the discourse and Claims Classifiers. We also tested these features with the manually annotated 
classes instead of the classifier-derived classes. These results, shown in the final two rows of 
table 9, suggest that improving the classifiers for these classes could allow us to reap a benefit 
from both features.  

Discourse Classifier and Claims Classifier 
The Discourse and Claims Classifiers were created to support the geneRIF classifier, though they 
may prove useful for other research, as well.  

Interestingly, the best results are obtained from both classifiers when individual classes were 
given binary classification, rather than all classes being simultaneously assigned in a multi-way 
classification. For discourse, the best results from the multi-way classification are available in 
table 10, while the best results from individual binary classifications are in tables 11-16. For 
claims, the best results from the multi-way classification are available in table 17, while the best 
results from individual binary classifications are in tables 18-20. 

Table 10: Discourse All Classes Classification Using position + bigrams in Naïve Bayes. 
 

Precision Recall F1 
Results 0.64 0.63 0.63 
Title 0.99 0.80 0.89 
Background 0.77 0.70 0.73 
Purpose 0.38 0.67 0.48 
Methods 0.54 0.59 0.56 
Conclusions 0.63 0.65 0.64 

 

Table 11: Discourse "Results" Classification Using position + bigrams in SVM. 
 

Precision Recall F1 
Non-
results 

0.96 0.80 0.87 

Results 0.67 0.91 0.77 
 

Table 12: Discourse "Title" Classification Using position + unigrams in SVM 
 

Precision Recall F1 
Non-title 1.00 1.00 1.00 
Title 1.00 1.00 1.00 

 

Table 13: Discourse "Background" Classification using position + unigrams in AdaBoost 
 

Precision Recall F1 
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Non-background 0.88 0.95 0.91 
Background 0.82 0.62 0.71 

 

Table 14: Discourse "Purpose" Classification Using position + bigrams in Naïve Bayes. 
 

Precision Recall F1 
Non-purpose 0.99 0.92 0.95 
Purpose 0.31 0.76 0.44 

 

Table 15: Discourse "Methods" Classification Using position  + bigrams in Naïve Bayes 
 

Precision Recall F1 
Non-methods 0.91 0.85 0.88 
Methods 0.58 0.70 0.63 

 

Table 16: Discourse "Conclusion" Classification Using position + bigrams in Naïve Bayes. 
 

Precision Recall F1 
Non-
Conclusion 

0.92 0.90 0.91 

Conclusion 0.58 0.65 0.62 
 

Table 17: Claims All Classes Classification 

  Precision Recall F1 
Established 0.57 0.81 0.67 
Putative 0.90 0.58 0.71 
Non-Claim 0.62 0.78 0.69 

 

Table 18: Claims "Established" Classification 

AdaBoostM1 Precision Recall F1 
Non-Established 0.89 0.94 0.91 
Established 0.78 0.63 0.70 

 

Table 19: Claims "Putative" Classification 
 

Precision Recall F1 
Non-
putative 

0.81 0.84 0.82 

Putative 0.82 0.78 0.80 
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Table 20: Claims "Non-Claim" Classification Using position + bigrams in SVM. 
 

Precision Recall F1 
No Non-Claim 0.96 0.66 0.78 
Non-Claim 0.51 0.92 0.65 

Recommendations 

Improve Current Application 

Citation Filter 

Improve Gene Mention Identification 
Our primary strategy to improve the filter will actually be to continue to improve our ability to 
identify gene mentions accurately. Since some citations contain mentions that we miss, and some 
contain spurious mentions that we pick up incorrectly, improving gene mention identification 
will cut down on both false positives and false negatives. 

Implement Additional Filter Criteria 
However, we also hope to develop more sophisticated filtering based on some of the more subtle 
indexing criteria. Specifically, we think we may be able to filter out case studies with only one 
patient, and also articles about gene databases instead of actual genes, neither of which receive 
gene indexing under the guidelines of the Indexing section, and both of which seem to have 
fairly clear indicators in the text.  

Test and Analyze an Expanded Test Set 
Filter performance may vary dramatically when additional species and journals are introduced in 
the next year. The filter errors may be different than those that we currently observe in our 
limited subset. The filter performance will need additional testing and analysis to determine 
additional appropriate strategies for improvement in a more general MEDLINE setting.  

Gene Mention Identification 

Refine the Dictionary 
Expanding our dictionary is an obvious strategy for improving our ability to find terms. This will 
improve recall. The current dictionary is built only from Entrez Gene entries and variants created 
through regular expressions. Additional resources for gene names must be identified and 
incorporated into the dictionary. Additional variants may also be created, based on our further 
analysis of missed mentions.  

Incorporate Additional Existing Software 
With additional time now allotted to this project, we plan to revisit the available identification 
tools that use statistical machine learning methods. These approaches could improve both 
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precision and recall. It is possible that such a tool will offer robustness that a rigid dictionary 
does not for unfamiliar names and variants, as well as help eliminate some of the bad mentions 
by recognizing their unlikely context. Our dictionary and related rules may improve the accuracy 
of a combined approach. Our annotated dataset could also be used to improve the training of an 
existing tool. Exploring ways to combine the information streams from a machine-learning tool 
and our dictionary matching program is a priority.  

Use Parts of Speech 
Identifying the part of speech that a word belongs to may clarify whether it is a gene mention or 
not. Verbs will never be genes, for example. It is likely that many additional types of words, and 
possibly even words appearing in certain kinds of phrases, will not be gene mentions.  Since 
MetaMap runs as part of our program already, using its integrated Part Of Speech tagger would 
be relatively simple. This could improve precision. 

Gene Mention Normalization 

Refine the Dictionary 
Because our normalization strategy rests heavily on our dictionary, expanding the dictionary as 
discussed above will also benefit this module. 

Implement Gene Profiles 
We are currently developing a method for comparing the similarity between the information in a 
candidate Entrez Gene record and the citation in question. We create a “gene profile” by 
extracting a collection of keywords from an Entrez Gene record. We can compare those 
keywords to a citation, and score the degree of matching. 

Use Additional Verification Cues 
Additional information in the abstract or metadata, or possibly even the article full text, could be 
used to disambiguate gene mentions. Cues that might be helpful and could be verified against the 
candidate Entrez Gene records include:  

• gene location or chromosome number 
• gene sequences 
• number of exons or introns 
• the position of amino acids in the wildtype (often mentioned in the context of variants or 

mutations) 

Using any of these additional cues requires developing the means to identify them first, so this 
strategy will require significant time investment. However, it is likely that identifying these 
additional features will be useful for other types of information extraction, so the time 
investment is likely to pay off in expanded applicability for the program. 
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Try Fuzzy Matching 
If we are able to successfully integrate a machine-learning based tool into our application, we 
will thereby generate some mentions that do not appear in our dictionary. We will also need to 
develop a method for making fuzzy matches to the dictionary entries when an exact match is not 
available. 

GeneRIF Extraction 

Test Additional Features 
The classifiers may perform better with additional features. The density of terms from the Gene 
Ontology in sentences has been found to be predictive for geneRIFs, so we would like to try a 
similar analysis [22], [23]. Additionally, verb tenses may be predictive, especially if combined 
with sentence position or Claims Class. A variety of other linguistic patterns could also be 
investigated, to find dependencies that are predictive, like subject-object relationships with gene 
names. 

Enhance Dataset Tagging 
We plan to continue to enhance the tagging on the dataset. Although virtually any sentence with 
novel genetic information is marked as a potential geneRIF, some sentences are obviously better 
candidates than others. For example, geneRIFs tend to be sentences that summarize overall 
findings and make sense independent of surrounding context. We plan to develop some criteria 
for identifying high-quality geneRIFs or otherwise ranking geneRIF quality, and tagging the 
dataset with this additional information. That information could then be used to weight the 
training data, or to developing ranking for candidate sentences, depending on which approach 
works better.  

Develop Simple Anaphora Resolution 
Anaphora means referring to a concept by only using part of its name or an indirect expression 
such as a pronoun. Resolving some of this kind of abbreviation as it relates to biological 
concepts would probably help us recognize geneRIF sentences. Through the course of reading 
many geneRIF sentences for this project, two areas present themselves as obvious candidates for 
simple anaphora resolution: mutations referring to genes and patients referring to diseases. 
Resolving anaphora of these types would make obvious instances where a gene and disease are 
both mentioned in a sentence. It would also give us better sentences to suggest to the indexers, 
since the sentences would contain more complete ideas.  

Below are several examples of sentences with anaphora resolution. The corrective anaphora 
expansion is given in brackets. 

Examples of mutations referring to genes. This type of anaphora is likely to be resolveable. 

The B1B1 homozygote [of cholesterol ester transfer protein] was associated with 
significantly lower HDL-C levels in females and non-smoking males.  
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Significant differences in survival were detected among Rett syndrome cases grouped 
for the eight most frequent mutations [of MECP2]. 

Example of a general protein type referring to a specific protein. This type of anaphora is 
more difficult to resolve. 

Our study shows that this factor [SOX10], in synergy with EGR2, strongly activates 
Cx32 expression in vitro by directly binding to its promoter.  

Examples of patients referring to disease. This is another case that is relatively 
straightforward. 

SCA 3 was identified in 31 (53.4%) patients [with ataxia] from 15 families. 

Of the 239 patients [with acute myeloblastic leukemias], 30 (12.6%) showed MLL 
abnormalities under FISH analysis. 

Haplotype analysis revealed that affected individuals [with autosomal dominant 
hearing loss] were heterozygous for one core SNP CAGTC haplotype, confirming 
location and autosomal dominant inheritance of the DFNA41 locus. 

An example of anaphora for symptoms, instead of a disease. This type of anaphora is again 
more problematic. 

 Direct sequence analysis revealed a deletion of 108 bp of factor V in eight out of 20 
individuals in this family [with normal factor V coagulant and anticoagulant 
properties]. 

Many additional type of anaphora exist, many of which are likely to be virtually impossible to 
resolve. We have not performed a full analysis of anaphora occurring in our dataset in order to 
design a detailed approach. However, our general strategy will be, as elsewhere, to target the 
easiest problems for the greatest gain, and then revisit the approach as needed for additional 
potential benefit. 

Expand to Additional Species 
This application must eventually address the whole of MEDLINE. The next step to expand this 
project is to develop the ability to identify and normalize genes across multiple species. This will 
entail the creation of several additional modules for the application, or incorporation of existing 
programs that perform similar functions. For example, at least two programs are available for 
download that already perform cross-species identification and normalization [17],[19]. If we 
can implement one of these, we may be able to accelerate the development of cross-species 
identification by building on existing research. 
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Develop a Species Identification Module 
Species identification will be similar to any other NER, like gene mention identification. Some 
research on this has been conducted for the BioCreative 3 challenge, and additional research is 
very likely to exist, as well. The favored approach from preliminary reading appears to be 
dictionary based. A full literature review must be performed, and a dictionary of species names 
constructed. A suitable pre-annotated dataset for this is likely already available. 

Develop Species-Specific Gene Dictionaries 
Dictionaries of gene names will need to be developed for each species, similar to the one 
constructed for humans in this prototype. As before, Entrez Gene can be used as the primary 
resource, and additional synonyms can be harvested from other databases. Many model 
organisms have dedicated gene databases. These must be identified and incorporated. 

Develop Species-to-Gene Assignment Module 
In cases where multiple species are mentioned or implied in a paper, any gene mentions must be 
assigned to the appropriate species. Methods from BioCreative 3 for disambiguating species-to-
gene assignments generally followed a proximity model, using various measurements of 
closeness of the species name to the gene mention to make the assignment [7]. Additional 
disambiguation features like chromosome location and sequences discussed above could also be 
used to enhance this module. 

Design New Indexing Interface and Test Protocols 
To put the system into production, the interface that gene indexers currently use in DCMS will 
need to be redesigned to allow them to evaluate and modify suggestions, to manually perform 
tasks when the GIA fails, and ideally to give instant feedback that can improve the functioning of 
the tool, for example by adding terms to the dictionary and marking bad mentions. The design 
process is likely to be conducted through focus grouping. After an interface is designed, indexers 
will need to run a trial with it to evaluate how the new design and features affect speed and to 
give feedback. 

Certain gene indexing guidelines should be revisited at this point, as well. For example, the 
prohibition against using the title as a geneRIF is generally ignored by indexers, and may be 
misguided. Additionally, the arbitrary maximum geneRIF length of 255 characters is 
unnecessary and may waste expensive indexer time, by forcing them to shuffle and trim words 
simply to accommodate the limit. Finally, the indexing “rule of three” is another limit that may 
be rendered obsolete by the GIA. Indexers are instructed to ignore gene indexing for articles with 
more than three genes if they do not appear in the title. The intent of this rule is to prevent 
indexers from becoming mired in excessive linking for single articles. However, if linking is 
automated, the time spent making additional links may become negligible. In this case, the “rule 
of three” should be abandoned in favor of comprehensive gene indexing. 

Experiment with Full Text 
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We suspect, based on conversations with indexers and other researchers, that as much as half of 
the information we will require on genes and species may be available only in the full text of an 
article. However, analyzing the full text may prove more difficult, due to the amount of noise a 
full text article is likely to have relative to an abstract. Additionally, gaining access to full text 
articles during the overnight pre-processing period may prove impossible. Publishers have so far 
been resistant to allowing the NLM this kind of access for use with the MTI, but the need for full 
text analysis is only likely to grow as the number of applications for information extraction 
expands. Although getting access and analysis of full text is problematic, it may prove vital. The 
magnitude of these problems and options for addressing them need to be addressed.  

Release Resources for the Greater Research Community 

Release Annotated Corpus for Other Researcher 
The annotated corpus produced in this project is a valuable research product to make available to 
the research public. Even with only two coders, few hand annotated datasets of this size are 
available publically. It will be made publically available and updated as we develop additional 
tagging and possibly discover and correct mistakes. 

Develop Modules into Standalone, User-Friendly NLP tools 
Kabiljo et al have found that despite the availability of many supposedly turn-key named entity 
recognition (NER) tools, most such tools are in fact outside the ability of average biology 
researchers to implement [30]. If this is indeed the case, NLM is in a position to provide a set of 
user-friendly information-mining tools for which there exists a great demand and present void. 
As our prototype evolves into a full-fledged application for use within DCMS, we strongly 
recommend that it also be developed for public release into a set of standalone, user-friendly 
tools for NER, normalization, and possibly auto-summarization or relationship extraction. 

Investigate Additional Areas for Automation 

Investigate Additional Indexing Functions 
Additional indexing functions might also be automated or partially automated with similar 
techniques to those we have used here. Furthermore, the modules developed here might also be 
used to enhance the MTI, improving the selection of genes as subject headings, for example. 
Similar entity recognition techniques might be applied to chemicals and chemical families that 
receive chemical flagging during indexing, also improving the functions of the MTI. 
Furthermore, it may be possible to automatically select the articles from journals that receive 
selective indexing, and a brief review of the relevant guidelines does suggest that we could 
effectively eliminate many irrelevant articles before any human time is devoted to examining 
them. A full review of the indexing workflow might reveal additional targets for automation. 
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Investigate Semantic Relationship Extraction 
A current focus of biomedical data mining is the extraction of semantic relationships from 
literature, including previous and ongoing research at both Lister Hill Center and NCBI. These 
relationships include gene-gene, gene-protein, and protein-protein interactions. Additional 
biochemicals such as flavonoids and cholesterol are also of interest, as are gene-disease or gene-
phenotype relationships. The desire is to distill complex sentences containing information about 
any of these named entities into simple triplet relationships of the basic structure: entity-
relationship-entity. Such relationships can be represented computationally, and so can be sorted, 
filtered, queries, searched, combined, represented and otherwise manipulated in a myriad of 
ways that free text does not accommodate. There would be obvious benefits to capturing 
information in this computable form, if possible, instead of the free text of the current geneRIFs. 
Our efforts to identify sentences with novel genetic information represents an excellent starting 
place from which to better extract genetic relationships. 

Efforts are ongoing to build so-called “interactomes,” grand databases of such relationships 
through which metabolic pathways and links between chemicals and diseases may be revealed 
and represented. However, the scope of such projects is enormous, and no existing resources 
approach comprehensiveness. Due to the labor-intensive nature of manual relationship extraction 
from literature, the landscape of interactomes is currently a patchwork of free and subscription 
resources covering various organisms to various degrees for only certain types of relationships. 
NLM should carefully consider the role it wishes to have in contributing to, curating, and hosting 
interactome resources in the future.  

Encourage the Adoption of Reporting Standards 
An unavoidable conclusion of this type of research is that machine processing of biomedical text 
would be made substantially easier if the output of authors could be controlled in key ways. If 
authors could be compelled to submit metadata with their articles that named relevant entities 
such as genes and proteins with standard identifiers, the ambiguity that is a source of so much 
struggle here could be eliminated. This approach would not require altering the paper itself, but 
rather would provide a key to analysis of the named entities as they appear in the paper. Other 
named entities that could be coded this way include diseases, drugs, species and strains, cell 
lines, and biologically active compounds such as cholesterol. Although this would obviously 
leave open the problem of past text, the most current research could be processed with much 
greater efficiency and accuracy. 

As demand grows for detailed curation of experimental efforts, including details on how data has 
been acquired, well-designed reporting standards will be essential to facilitate searching and 
mining of data. For example, the BioGrid interaction database contains interactions among genes 
and proteins [31]. However, each interaction extracted from the literature is additionally 
annotated with the methods by which the original data was gathered. A number of more 



30 
 

extensive reporting standards for specific types of experiments are currently being developed by 
discipline-specific committees. Many of these efforts are loosely organized under an umbrella 
effort known as Minimum Information for Biological and Biomedical Investigations (MIBBI), 
but progress advancing them is patchy and slow [32]. 

Although a detailed examination of the needs and options for data standardization in biomedical 
research is outside the scope of this report, we do advise that the NLM should consider its role in 
facilitating standards development for data reporting as a means to organize and disseminate 
biomedical information. 
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Appendix: Guidelines for Class Assignment 

Discourse Blocks  
• Title: the title of the citation 
• Background: Background information defines current challenges or questions in the field, 

reiterates established findings, or describes previous earlier work related to the current 
experiments. 

• Objective: Objective describes the hypothesis or research challenge the experiment was 
intended to address. 

• Methods: Methods describe the research techniques used to collect the research data. This 
includes the descriptions of a sample population. In a case report, this includes just the 
initial summarization of the presentation of the case “a family of four presenting with 
etc…” Methods include methods of analysis that are not “wet lab” based, such as 
computer modeling, statistical analysis, and meta-analysis. 

• Results: Results summarize the data reported. 
• Conclusions: Conclusions report the status of the research hypotheses, and discuss the 

additional significance or implications of the findings. Pay attention to the difference 
between reporting the actual data (Results) and drawing conclusions from the data 
(Conclusions). For example: “Mutations were strongly correlated to disease phenotypes.” 
(Results) versus “This mutation causes heart attacks.” (Conclusion) Conclusions should 
also include non-putative discussion of the significance of the work (“This research adds 
to our knowledge of heart disease”) and implications for further research (“Other 
mutations may still be implicated in heart attacks”). 

• Not all types of discourse need appear in a given abstract. 
• All sentences should be tagged.  
• Categories are not mutually exclusive, and multiple categories may be needed to describe 

a sentence. For example, it is not uncommon to see a sentences that contains both 
methods and results, as in, “Sequencing of the exons revealed 17 new mutations.” 
Another common combination is objective and methods, as in, “In order to investigate 
the connection between COX1 and mitral valve disease, we sequenced chromosome 7 in 
30 patients with prolapsed valve disorder.” 

Scientific Claims  
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• Established: established claims are statements of relevant scientific information that was 
known or assumed before the publication of the paper. These are generally provided as 
background introductory information, or offered as contrast to the new findings in the 
paper, and include negative claims (non-association of risk factors, for example). Factual 
sentences that do not make scientific claims, like those provided for historical character 
or narrative continuity, should be marked as non-claims.  

• Putative: putative claims are factual statements either reporting or interpreting the data 
collected or analyzed in the paper, including negative findings. Claims include those that 
are qualified or “cautious” findings like “may indicate”, “suggest”, or “predict.” Putative 
claims also include those made in the title that may not be full sentences, but indicate a 
new scientific finding, such as “Association between NC1 polymorphisms and 
schizophrenia.” 

• Non-claims: Trivial facts that are tangential to the scientific claims of the paper, or non-
factual statements. Speculative consequences of further research and references to the 
significance of the research should be considered non-claims. Recommendations are non-
claims. 

• All sentences should be tagged.  
• Categories are mutually exclusive. Sentences to which multiple categories could be 

applied should be given their category in this order of preference: Putative, Established, 
Non-Claim. 

GeneRIF types 
• Non-geneRIF: Any sentence that does not contain GeneRIF information. A geneRIF must 

contain new scientific information about a gene or gene product such as protein or RNA. 
geneRIFs may not be the results of gene therapy trials. 

• Referential: A sentence that summarizes the nature of the paper or findings, without 
giving actual findings. These include sentences summarizing the scope of a review or 
population study. Titles and methods often contain referential geneRIFs. Referential 
geneRIFs should be tagged even when “better” geneRIF candidates exist elsewhere in the 
abstract. 

• Isolation: A sentence that indicates the first isolation and description of a new gene or 
gene product(s). This does not include the isolation of new mutations, SNPs, or other 
polymorphisms in known genes. New mutations should be described as function if they 
are associated with a particular disease or other phenotype and as structure if they are 
given in the context of specific regions or structural effect on a protein or RNA product. 

• Structure: A sentence describing the structure of a gene or gene product. This includes 
sequence, folding and other conformational changes, composition and formation of 
multiunit products, and modifications or variations to a primary structure. Identification 
of new attributes in the gene or protein itself, such as exons, promoter regions, binding 
sites, repeats, and so on are considered structure geneRIFs. Identification of variant 
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proteins should be considered structure. Not all descriptions of mutations are structural 
geneRIFs.  

o Mutations resulting implicitly in a major structural change, such as a large 
deletion or a frameshift, should be marked as structural.  

o Smaller mutations are also structural geneRIFs if they are described in terms of 
the region of a gene or protein where the mutation occurs or is near, like “the 
hydrophilic binding region” or “the promoter region.”  

o Single nucleotide or amino acid substitutions should not be described as structural 
geneRIFs UNLESS an explicit structural change resulting from them is given 
(folding error, etc.) or a region is described (as above). Such single substitutions 
that are linked to a conformational change are structure geneRIFs. Substitutions 
that describe a functional result without describing any other structural result are 
function geneRIFs. If the sentence describes a substitution occurring in a 
particular region with a known function, and thereby effecting a functional 
change, they should be marked as both structure and function. Single substitutions 
without additional information given are non-geneRIFs.  

• Function: A sentence describing the role of a gene or gene product. This can include 
normal or pathological functions, interactions with other molecules and genes outside of 
complexing, and association to disease or other phenotypes. Disease related mutations are 
functions. The prevalence of mutations or variants in a disease should be labeled as 
functions, whereas the amount of expression in a disease should be labeled as expression. 

• Expression: A sentence describing differential expression of a gene or gene product, 
including colocalization with other molecules, expression profiles in tissues or organs, 
expression and occurrence in specific populations, differential expression like up- or 
down-regulation or over-transmission in response to processes like heat shock, disease, 
and embryonic development. 

• Other: Anything that is a geneRIF candidate (carries significant new information about a 
gene or gene product), but doesn’t fall into any previous categories. This category should 
not be used unless absolutely unavoidable. 

• All sentences should be tagged.  
• Categories are not mutually exclusive, and multiple categories should be assigned to 

sentences that contain multiple kinds of geneRIF information. For example, it is 
especially common for structural information to be accompanied by function, as in, “This 
mutation leads to an improperly folded protein that is enzymatically inactive.” 
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