Specimen Number Specimen Type Peripheral Bloo				Туре	on, DC 20037	Account Number	Phone: 202-555- Account Phone Number	Route
		Patient Last N		2100 u		Patient Barc	code	
Patient First	Name		Patient M	iddle Name				
Patient SS#		Patient P	hone	Total Volume				
Age (Y/M/D) 8 m.o.	D	ate of Birth	Male	Fasting	1			
		Patient Addres	is		Indication: Hemo	philia, possibly ty	pe B	
					Family History: H Ethnicity: Native	Family history of u e American, Nava	incontrolled bleeding jo Tribe	
Date and Time Colle	cted	Date Entered	Date a	nd Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physicia	in ID
Hemophilia Mut	ation E	valuation		Tests	Ordered			

GENE	TEST RESULTS	EXPLANATION
F9 (Xq27.1)	Arg75Ter	This result confirms the diagnosis of Hemophilia B . This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., APTT, Factor IX Activity, Factor IX Inhibitor, etc.).
		A PCR/sequencing study has detected one copy of the Arg75Ter (F9: g.11409C>T, c.223C>T or p.Arg75Ter) variation. The Arg75Ter variation is a C to T change at nucleotide position 11409 of the F9 gene. This forms a premature stop (termination) codon at amino acid position 75 resulting in an abnormally short or truncated protein.
		As males have only one copy of the X chromosome, a variation in an X-linked gene renders the patient with only a mutated form of the gene. Thus, they are susceptible to the most severe form of the disease.
F8 (Xq28)	Negative	

INDICATIONS FOR TESTING

Individuals with a diagnosis of hemophilia B, appropriate at-risk female relatives of probands with identified mutations, and hemophilia B carriers with genetic counseling, are candidates for testing.

METHODOLOGY

Factor IX sequencing: All coding exons (1-8) and associated intron junctions of the Factor IX gene are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Factor IX sequencing: From previous experience, we have been able to detect factor IX gene mutations in about 99% of individuals with the diagnosis of hemophilia B with specificity of mutation detection in probands and carrier detection is also estimated to be greater than 99%.

The sequence analysis will not detect mutations located in regions of the Factor IX gene that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hemophilia B is characterized by deficiency in factor IX clotting activity that results in prolonged oozing after injuries, tooth extractions, or surgery, and delayed or recurrent bleeding prior to complete wound healing. This is an X-linked recessive bleeding disorder with an incidence of about 1 per 30,000 live male births. Hemophilia B affects males, however, all male offspring will be normal, and although all female offspring will be obligatory carriers, they rarely have symptomatic bleeding. In contrast, female offspring of carriers of hemophilia B have a 50% chance of being carriers themselves, and each male offspring has a 50% chance of being affected.

The age of diagnosis and frequency of bleeding episodes are related to the level of factor IX clotting activity. In severe hemophilia B, spontaneous joint or deep-muscle bleeding is the most frequent symptom. Individuals with severe hemophilia B are usually diagnosed during the first two years of life; without prophylactic treatment, they may average up to two to five spontaneous bleeding episodes each month. Individuals with moderate hemophilia B seldom have spontaneous bleeding; however, they do have prolonged or delayed oozing after relatively minor trauma and are usually diagnosed before age five to six years; the frequency of bleeding episodes varies from once a month to once a year. Individuals with mild hemophilia B do not have spontaneous bleeding episodes; however, without pre- and post-operative treatment, abnormal bleeding occurs with surgery or tooth extractions; the frequency of bleeding may vary from once a year to once every ten years. Individuals with mild hemophilia B are often not diagnosed until later in life. In any individual with hemophilia B, bleeding episodes may be more frequent in childhood and adolescence than in adulthood. Approximately 10% of carrier females are at risk for bleeding (even if the affected family member has mild hemophilia B) and are thus symptomatic carriers, although symptoms are usually mild. After major trauma or invasive procedures, prolonged or excessive bleeding usually occurs, regardless of severity.

- 1. Yoshitake S, Schach BG, Foster DC, et al: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985 July 2;24(14):3736-3750
- 2. Giannelli F, Green PM, Sommer SS, et al: Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Acids Res 1998 Jan 1;26(1):265-268
- 3. Ketterling RP, Bottema CD, Phillips JA 3rd, et al: Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 1991 Aug;10(4):1093-1096

linical Testing Laboratory, Inc. Specimen Number Specimen				Туре	on, DC 20037 Control Number	Account Number	Phone: 202-555- Account Phone Number	Route
		Patient Last N	Peripheral ame	BIOOU		Patient Barc	ode	
Patient First	Name		Patient M	iddle Name				
Patient SS#		Patient P	hone	Total Volume				
Age (Y/M/D) 8 m.o.	D	ate of Birth	Male	Fasting				
		Patient Addres	s		Indication: Hemo	philia, possibly ty	pe B	
					Family History: F Ethnicity: Native	Samily history of u e American, Nava	incontrolled bleeding jo Tribe	
Date and Time Colle	cted	Date Entered	Date a	nd Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID
Hemophilia Mut	ation Ex	valuation		Tests	Ordered			

GENE	TEST RESULTS	EXPLANATION
F8 (Xq28)	Arg15Ter	This result confirms the diagnosis of Hemophilia A . This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., APTT, Factor VIII Activity, etc.).
		A PCR/sequencing study has detected one copy of the Arg15Ter (F8:g.5214C>T, c.43C>T or p.Arg15Ter) variation. The Arg15Ter variation is a C to T change at nucleotide position 5214 of the F8 gene and 43 of the F8 mRNA transcript. This forms a premature stop (termination) codon at amino
		acid position 15 resulting in an abnormally short or truncated protein. As males have only one copy of the X chromosome, a variation in an X-linked gene renders the patient with only a mutated form of the gene. Thus, they are susceptible to the most severe form of the disease.
F8 (Xq28)	Negative	

INDICATIONS FOR TESTING

Individuals with a diagnosis of hemophilia B, appropriate at-risk female relatives of probands with identified mutations, and hemophilia B carriers with genetic counseling, are candidates for testing.

METHODOLOGY

Factor IX sequencing: All coding exons (1-8) and associated intron junctions of the Factor IX gene are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Factor IX sequencing: From previous experience, we have been able to detect factor IX gene mutations in about 99% of individuals with the diagnosis of hemophilia B with specificity of mutation detection in probands and carrier detection is also estimated to be greater than 99%.

The sequence analysis will not detect mutations located in regions of the Factor IX gene that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hemophilia B is characterized by deficiency in factor IX clotting activity that results in prolonged oozing after injuries, tooth extractions, or surgery, and delayed or recurrent bleeding prior to complete wound healing. This is an X-linked recessive bleeding disorder with an incidence of about 1 per 30,000 live male births. Hemophilia B affects males, however, all male offspring will be normal, and although all female offspring will be obligatory carriers, they rarely have symptomatic bleeding. In contrast, female offspring of carriers of hemophilia B have a 50% chance of being carriers themselves, and each male offspring has a 50% chance of being affected.

The age of diagnosis and frequency of bleeding episodes are related to the level of factor IX clotting activity. In severe hemophilia B, spontaneous joint or deep-muscle bleeding is the most frequent symptom. Individuals with severe hemophilia B are usually diagnosed during the first two years of life; without prophylactic treatment, they may average up to two to five spontaneous bleeding episodes each month. Individuals with moderate hemophilia B seldom have spontaneous bleeding; however, they do have prolonged or delayed oozing after relatively minor trauma and are usually diagnosed before age five to six years; the frequency of bleeding episodes varies from once a month to once a year. Individuals with mild hemophilia B do not have spontaneous bleeding episodes; however, without pre- and post-operative treatment, abnormal bleeding occurs with surgery or tooth extractions; the frequency of bleeding may vary from once a year to once every ten years. Individuals with mild hemophilia B are often not diagnosed until later in life. In any individual with hemophilia B, bleeding episodes may be more frequent in childhood and adolescence than in adulthood. Approximately 10% of carrier females are at risk for bleeding (even if the affected family member has mild hemophilia B) and are thus symptomatic carriers, although symptoms are usually mild. After major trauma or invasive procedures, prolonged or excessive bleeding usually occurs, regardless of severity.

- 4. Yoshitake S, Schach BG, Foster DC, et al: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985 July 2;24(14):3736-3750
- 5. Giannelli F, Green PM, Sommer SS, et al: Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Acids Res 1998 Jan 1;26(1):265-268
- 6. Ketterling RP, Bottema CD, Phillips JA 3rd, et al: Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 1991 Aug;10(4):1093-1096

linical Testing Laboratory, Inc. Specimen Number Specime				Гуре	on, DC 20037 Control Number	Account Number	Phone: 202-555- Account Phone Number	Rout
			Peripheral I	Blood				
		Patient Last N	ame			Patient Barc	code	
Raven	Name		Patient Mi	ddle Name				
Patient SS#		Patient P	hone	Total Volume				
Age (Y/M/D) 25 y.o.	Dat	e of Birth	Female	Fasting				
		Patient Addres	55		Indication: Hemo	philia B carrier		
					Family History: H Ethnicity: Native	Family history of u e American, Nava	incontrolled bleeding jo Tribe	
Date and Time Colle	cted	Date Entered	Date an	d Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID
	ation Fra	aluation		Tests	Ordered			

GENE	TEST RESULTS	EXPLANATION
F9 (Xq27.1)) Arg75 Arg75Ter Heterozygous Carrier Status	This result confirms the status of carrier for Hemophilia B . This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., APTT, Factor IX Activity, Factor IX Inhibitor, etc.).
		A PCR/sequencing study has detected one Arg75Ter (F9: g.11409C>T, c.223C>T or p.Arg75Ter) variation. The Arg75Ter variation is a C to T change at nucleotide position 223 in the F9 gene. This forms a premature stop (termination) codon at amino acid position 75 resulting in an abnormally short or truncated protein.
		Female carriers of Hemophilia B have one normal X chromosome and one abnormal X chromosome. The normal X chromosome produces a certain amount of factor IX clotting factor. This protects carriers from the most severe form of hemophilia, however the levels of circulating clotting factors among carriers are very wide.
F8 (Xq28)	Negative	

INDICATIONS FOR TESTING

Individuals with a diagnosis of hemophilia B, appropriate at-risk female relatives of probands with identified mutations, and hemophilia B carriers with genetic counseling, are candidates for testing.

METHODOLOGY

Factor IX sequencing: All coding exons (1-8) and associated intron junctions of the Factor IX gene are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Factor IX sequencing: From previous experience, we have been able to detect factor IX gene mutations in about 99% of individuals with the diagnosis of hemophilia B with specificity of mutation detection in probands and carrier detection is also estimated to be greater than 99%.

The sequence analysis will not detect mutations located in regions of the Factor IX gene that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hemophilia B is characterized by deficiency in factor IX clotting activity that results in prolonged oozing after injuries, tooth extractions, or surgery, and delayed or recurrent bleeding prior to complete wound healing. This is an X-linked recessive bleeding disorder with an incidence of about 1 per 30,000 live male births. Hemophilia B affects males, however, all male offspring will be normal, and although all female offspring will be obligatory carriers, they rarely have symptomatic bleeding. In contrast, female offspring of carriers of hemophilia B have a 50% chance of being carriers themselves, and each male offspring has a 50% chance of being affected.

The age of diagnosis and frequency of bleeding episodes are related to the level of factor IX clotting activity. In severe hemophilia B, spontaneous joint or deep-muscle bleeding is the most frequent symptom. Individuals with severe hemophilia B are usually diagnosed during the first two years of life; without prophylactic treatment, they may average up to two to five spontaneous bleeding episodes each month. Individuals with moderate hemophilia B seldom have spontaneous bleeding; however, they do have prolonged or delayed oozing after relatively minor trauma and are usually diagnosed before age five to six years; the frequency of bleeding episodes varies from once a month to once a year. Individuals with mild hemophilia B do not have spontaneous bleeding episodes; however, without pre- and post-operative treatment, abnormal bleeding occurs with surgery or tooth extractions; the frequency of bleeding may vary from once a year to once every ten years. Individuals with mild hemophilia B are often not diagnosed until later in life. In any individual with hemophilia B, bleeding episodes may be more frequent in childhood and adolescence than in adulthood. Approximately 10% of carrier females are at risk for bleeding (even if the affected family member has mild hemophilia B) and are thus symptomatic carriers, although symptoms are usually mild. After major trauma or invasive procedures, prolonged or excessive bleeding usually occurs, regardless of severity.

- 1. Yoshitake S, Schach BG, Foster DC, et al: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985 July 2;24(14):3736-3750
- 2. Giannelli F, Green PM, Sommer SS, et al: Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Acids Res 1998 Jan 1;26(1):265-268
- 3. Ketterling RP, Bottema CD, Phillips JA 3rd, et al: Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 1991 Aug;10(4):1093-1096

linical Testing Laboratory, Inc. Specimen Number Specime				Гуре	on, DC 20037 Control Number	Account Number	Phone: 202-555- Account Phone Number	Route
			Peripheral I	Blood				
		Patient Last N	ame			Patient Barc	code	
Raven	Name		Patient Mi	ddle Name				
Patient SS#		Patient P	hone	Total Volume				
Age (Y/M/D) 25 y.o.	Date	e of Birth	Female	Fasting				
		Patient Addres	55		Indication: Hemo	philia B carrier		
					Family History: F Ethnicity: Native	amily history of u e American, Nava	incontrolled bleeding jo Tribe	
Date and Time Colle	cted	Date Entered	Date an	d Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID
Hemophilia Mut	ation Eva	lustion		Tests	Ordered			

GENE	TEST RESULTS	EXPLANATION
F8 (Xq28)	Arg15 Arg15Ter Heterozygous Carrier Status	This result confirms the status of carrier for Hemophilia A . This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., APTT, Factor VIII Activity, etc.).
		A PCR/sequencing study has detected one copy of the Arg15Ter (F8:g.5214C>T, c.43C>T or p.Arg15Ter) variation. The Arg15Ter variation is a C to T change at nucleotide position 5214 of the F8 gene and 43 of the F8 mRNA transcript. This forms a premature stop (termination) codon at amino acid position 15 resulting in an abnormally short or truncated protein.
		Female carriers of Hemophilia A have one normal X chromosome and one abnormal X chromosome. The normal X chromosome produces a certain amount of factor IX clotting factor. This protects carriers from the most severe form of hemophilia, however the levels of circulating clotting factors among carriers are very wide.
F9 (Xq27.1)	Negative	

INDICATIONS FOR TESTING

Individuals with a diagnosis of hemophilia B, appropriate at-risk female relatives of probands with identified mutations, and hemophilia B carriers with genetic counseling, are candidates for testing.

METHODOLOGY

Factor IX sequencing: All coding exons (1-8) and associated intron junctions of the Factor IX gene are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Factor IX sequencing: From previous experience, we have been able to detect factor IX gene mutations in about 99% of individuals with the diagnosis of hemophilia B with specificity of mutation detection in probands and carrier detection is also estimated to be greater than 99%.

The sequence analysis will not detect mutations located in regions of the Factor IX gene that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hemophilia B is characterized by deficiency in factor IX clotting activity that results in prolonged oozing after injuries, tooth extractions, or surgery, and delayed or recurrent bleeding prior to complete wound healing. This is an X-linked recessive bleeding disorder with an incidence of about 1 per 30,000 live male births. Hemophilia B affects males, however, all male offspring will be normal, and although all female offspring will be obligatory carriers, they rarely have symptomatic bleeding. In contrast, female offspring of carriers of hemophilia B have a 50% chance of being carriers themselves, and each male offspring has a 50% chance of being affected.

The age of diagnosis and frequency of bleeding episodes are related to the level of factor IX clotting activity. In severe hemophilia B, spontaneous joint or deep-muscle bleeding is the most frequent symptom. Individuals with severe hemophilia B are usually diagnosed during the first two years of life; without prophylactic treatment, they may average up to two to five spontaneous bleeding episodes each month. Individuals with moderate hemophilia B seldom have spontaneous bleeding; however, they do have prolonged or delayed oozing after relatively minor trauma and are usually diagnosed before age five to six years; the frequency of bleeding episodes varies from once a month to once a year. Individuals with mild hemophilia B do not have spontaneous bleeding episodes; however, without pre- and post-operative treatment, abnormal bleeding occurs with surgery or tooth extractions; the frequency of bleeding may vary from once a year to once every ten years. Individuals with mild hemophilia B are often not diagnosed until later in life. In any individual with hemophilia B, bleeding episodes may be more frequent in childhood and adolescence than in adulthood. Approximately 10% of carrier females are at risk for bleeding (even if the affected family member has mild hemophilia B) and are thus symptomatic carriers, although symptoms are usually mild. After major trauma or invasive procedures, prolonged or excessive bleeding usually occurs, regardless of severity.

- 4. Yoshitake S, Schach BG, Foster DC, et al: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985 July 2;24(14):3736-3750
- 5. Giannelli F, Green PM, Sommer SS, et al: Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Acids Res 1998 Jan 1;26(1):265-268
- 6. Ketterling RP, Bottema CD, Phillips JA 3rd, et al: Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 1991 Aug;10(4):1093-1096

Clinical Testing Laboratory, Inc				2150 Pennsyl	g Lab of Washington vania Avenue NW on, DC 20037		Phone: 202-555	-1212
Specimen Num	Specimen Number Specimen Type Peripheral Blood				Control Number	Account Number	Account Phone Number	Route
		Patient Last Na	me			Patient Bar	code	
Patient First Name Patient Middle Name								
Patient SS#		Patient Ph	ione	Total Volume				
Age (Y/M/D) 10 y.o.	Date	of Birth	Male Sex	Fasting				
		Patient Address	s			ophilia, possibly ty	•	
					Family History: 1 Ethnicity: Possi	Family history unl bly Han Chinese	known	
Date and Time Collec	eted 1	Date Entered Date and Time Reported			Physician Name Jane Ferreiro, MD	NPI	Physic	cian ID
Hemophilia Muta	ation Eval	uation		Tests (Ordered			
Please send a co	opy of th	e final rep	ort to the]		Comments nce/M1 Training offi	ice via Fax at (2(02) 555-1212	

GENE	TEST RESULTS	EXPLANATION
F9 (Xq27.1)	Asp110Gly	This result confirms the diagnosis of Hemophilia B . This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., APTT, Factor IX Activity, Factor IX Inhibitor, etc.).
		A PCR/sequencing study has detected one copy of the Asp110Gly (F9: g.15392A>G, c.329A>G or p.Asp110Gly) variation. The Asp110Gly variation is an A to G change at nucleotide position 15392 in the F9 gene. This encodes an amino acid at position 110 (glycine) that is different from the reference (aspartate) and may have implications on structure and or function of the resulting protein.
		As males have only one copy of the X chromosome, a pathogenic variation in an X-linked gene renders the patient with only a mutated form of the gene. Thus, they are highly susceptible to development of significant abnormal hemophiliac symptoms.
F8 (Xq28)	Negative	

INDICATIONS FOR TESTING

Individuals with a diagnosis of hemophilia B, appropriate at-risk female relatives of probands with identified mutations, and hemophilia B carriers with genetic counseling, are candidates for testing.

METHODOLOGY

Factor IX sequencing: All coding exons (1-8) and associated intron junctions of the Factor IX gene are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Factor IX sequencing: From previous experience, we have been able to detect factor IX gene mutations in about 99% of individuals with the diagnosis of hemophilia B with specificity of mutation detection in probands and carrier detection is also estimated to be greater than 99%.

LIMITATIONS

The sequence analysis will not detect mutations located in regions of the Factor IX gene that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hemophilia B is characterized by deficiency in factor IX clotting activity that results in prolonged oozing after injuries, tooth extractions, or surgery, and delayed or recurrent bleeding prior to complete wound healing. This is an X-linked recessive bleeding disorder with an incidence of about 1 per 30,000 live male births. Hemophilia B affects males, however, all male offspring will be normal, and although all female offspring will be obligatory carriers, they rarely have symptomatic bleeding. In contrast, female offspring of carriers of hemophilia B have a 50% chance of being carriers themselves, and each male offspring has a 50% chance of being affected.

The age of diagnosis and frequency of bleeding episodes are related to the level of factor IX clotting activity. In severe hemophilia B, spontaneous joint or deep-muscle bleeding is the most frequent symptom. Individuals with severe hemophilia B are usually diagnosed during the first two years of life; without prophylactic treatment, they may average up to two to five spontaneous bleeding episodes each month. Individuals with moderate hemophilia B seldom have spontaneous bleeding; however, they do have prolonged or delayed oozing after relatively minor trauma and are usually diagnosed before age five to six years; the frequency of bleeding episodes varies from once a month to once a year. Individuals with mild hemophilia B do not have spontaneous bleeding episodes; however, without pre- and post-operative treatment, abnormal bleeding occurs with surgery or tooth extractions; the frequency of bleeding may vary from once a year to once every ten years. Individuals with mild hemophilia B are often not diagnosed until later in life. In any individual with hemophilia B, bleeding episodes may be more frequent in childhood and adolescence than in adulthood. Approximately 10% of carrier females are at risk for bleeding (even if the affected family member has mild hemophilia B) and are thus symptomatic carriers, although symptoms are usually mild. After major trauma or invasive procedures, prolonged or excessive bleeding usually occurs, regardless of severity.

- 1. Yoshitake S, Schach BG, Foster DC, et al: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985 July 2;24(14):3736-3750
- 2. Giannelli F, Green PM, Sommer SS, et al: Haemophilia B: database of point mutations and short additions and deletions-eighth edition. Nucleic Acids Res 1998 Jan 1;26(1):265-268
- 3. Ketterling RP, Bottema CD, Phillips JA 3rd, et al: Evidence that descendants of three founders constitute about 25% of hemophilia B in the United States. Genomics 1991 Aug;10(4):1093-1096

ClinGen Linical Testing Laboratory, Inc		b		2150 Pennsyl	g Lab of Washington Ivania Avenue NW ton, DC 20037		Phone: 202-555-	1212
Specimen Nun	ıber		Specimen Peripheral		Control Number	Account Number	Account Phone Number	Route
		Patient Last N	ame			Patient Bar	code	
Patient First 1 David	Name		Patient M	iddle Name				
Patient SS#		Patient P	hone	Total Volume				
Age (Y/M/D) 6 y.o.	I	Date of Birth	Male	Fasting				
		Patient Addres	is		Indication: Sever	e Combined Imm	unodeficiency	
					Family History: 1 Ethnicity: West	No family history ern European Cau	ıcasian	
Date and Time Colle	cted	Date Entered	Date a	nd Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID
Severe Combine	d Imm	unodeficiency	(SCID): Th	Tests ree-gene Profile	Ordered (IL2RG, ADA, IL7R)			
Please send a c	opy of	the final rep	ort to the l		Comments ence/M1 Training offi	ice via Fax at (20)2) 555-1212	

GENE	TEST RESULTS	EXPLANATION
IL2RG (Xq13.1)	Cys115Arg	This result confirms the diagnosis of X-linked Severe Combined Immunodeficiency (SCID). This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed one copy of the Cys115Arg (IL2RG: g.5939T>C, c.343T>C or p.Cys115Arg) variation. The Cys115Arg mutation is caused by a T to C change at nucleotide position 5939 in the IL2RG gene. This encodes an amino acid at position 115 (arginine) that is different from the reference (cysteine) and may have implications on structure and or function of the resulting protein.
		This individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.
ADA (20q13.12) IL7R (5p13.2)	Negative	No known pathogenic variant detected in these genes

INDICATIONS FOR TESTING

Individuals with a diagnosis of Severe Combined Immunodeficiency (SCID) with genetic counseling, are candidates for testing.

METHODOLOGY

Gene sequencing: All coding exons and associated intron junctions are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Gene sequencing: From previous experience, we have been able to detect ADA, IL2RG, or IL7R mutations in about 99% of individuals with the diagnosis of Severe Combined Immunodeficiency (SCID) with specificity of mutation detection in probands detection is also estimated to be greater than 99%.

LIMITATIONS

The sequence analysis will not detect mutations located in regions of ADA, IL2RG, or IL7R that are not analyzed (noncoding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID).

-from MeSH

				Washington, DC 20037 pecimen Type Control Number Account Number			Phone: 202-555-1212 Account Phone Number		
		Patient Last N	Peripheral I	Blood		Patient Bar	rode		
Patient First Name Patient Middle Name				ddle Name					
Patient SS#		Patient P	Phone	Total Volume					
Age (Y/M/D) 4 y.o.	1	Date of Birth	Sex Female	Fasting	1				
		Patient Addre	\$\$		Indication: Sever	e Combined Imm	unodeficiency		
					Family History: N Ethnicity: Sri Lai	No family history nka – Southern As	sia		
Date and Time Collec	ted	Date Entered Date and Time Reported		Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID		
Severe Combine	l Imm	unodeficiency	(SCID): Th		Ordered (IL2RG, ADA, IL7R)				

GENE	TEST RESULTS	EXPLANATION
ADA (20q13.12)	Gly216Arg Gly216Arg	This result confirms the diagnosis of Severe Combined Immunodeficiency (SCID) due to Adenosine Deaminase Deficiency . This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed two copies of the Gly216Arg (ADA: g.33697G>A, c.646G>A or p.Gly216Arg) variation. The Gly216Arg mutation is caused by a G to A change at nucleotide position 646 in the ADA gene. This encodes an amino acid at position 216 (arginine) that is different from the reference (glycine) and may have implications on structure and or function of the resulting protein.
		This individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.
IL2RG (Xq13.1) IL7R (5p13.2)	Negative	No known pathogenic variant detected in these genes

INDICATIONS FOR TESTING

Individuals with a diagnosis of Severe Combined Immunodeficiency (SCID) with genetic counseling, are candidates for testing.

METHODOLOGY

Gene sequencing: All coding exons and associated intron junctions are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Gene sequencing: From previous experience, we have been able to detect ADA, IL2RG, or IL7R mutations in about 99% of individuals with the diagnosis of Severe Combined Immunodeficiency (SCID) with specificity of mutation detection in probands detection is also estimated to be greater than 99%.

LIMITATIONS

The sequence analysis will not detect mutations located in regions of ADA, IL2RG, or IL7R that are not analyzed (noncoding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions (in females). Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID).

-from MeSH

ClinGen Clinical Testing Laboratory, In	Clinical Testing Lab of Washington 2150 Pennsylvania Avenue NW Washington, DC 20037					Phone: 202-555-1212		
Specimen Nun	Specimen Number		Specimen Peripheral	Туре	Control Number	Account Number	Account Phone Number	Route
		Patient Last Na	ame			Patient Bar	code	
Patient First 1	Name		Patient M	iddle Name				
Patient SS#		Patient Ph	ione	Total Volume				
Age (Y/M/D) 19 y.o.	Date	of Birth	Sex Female	Fasting				
		Patient Address	s		Indication: Cong	enital Muscular D	ystrophy	
					Family History: M Ethnicity: Wester	No family history rn European Cauc	casian	
Date and Time Colle	and Time Collected Date Entered Date and Time Reported		Physician Name Jane Ferreiro, MD	NPI	Physician	ID		
Congenital Muse	cular Dyst	rophy Sequ	encing Pan		Ordered			
Please send a c	opy of th	e final rep	ort to the I		Comments nce/M1 Training offi	ice via Fax at (20)2) 555-1212	

GENE	TEST RESULTS	EXPLANATION
LMNA (1q22)	Arg453 Arg453Trp	This result confirms the diagnosis of Limb-Girdle Muscular Dystrophy type 1B. This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed one copy of the Arg453Trp (LMNA: g.58841C>T, c.1357C>T or p.Arg453Trp) variation. The Arg453Trp mutation is caused by a C to T change at nucleotide position 58841 in the LMNA gene. This encodes an amino acid at position 453 (tryptophan) that is different from the reference (arginine) and may have implications on structure and or function of the resulting protein.
		This individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.
Secondary Finding	:	
LMNA (1q22)	Arg482 Arg482Trp	This result suggests a diagnosis of Familial Partial Lipodystrophy, type 2. This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed one copy of the Arg482Trp (LMNA g.59412C>T, c.1444C>T or p.Arg482Trp) variation. The Arg482Trp mutation is caused by a C to T change at nucleotide position 159412 in the LMNA gene. This encodes an amino acid at position 482 (tryptophan) that is different from the reference (arginine) and may have implications on structure and or function of the resulting protein.
		This individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.

GENE	TEST RESULTS	EXPLANATION
EMD (Xq28) FHL1 (Xq26.3) SYNE1 (6q25.2) SYNE2 (14q23.2) TMEM43 (3p25.1)	Negative	No known pathogenic variant detected in these genes

INDICATIONS FOR TESTING

Individuals with a diagnosis of Emery-Dreifuss Muscular Dystrophy with genetic counseling, are candidates for testing.

METHODOLOGY

Gene sequencing: All coding exons and associated intron junctions are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Gene sequencing: From previous experience, we have been able to detect EMD, FHL1, LMNA, SYNE1, SYNE2, or TMEM43 mutations in about 99% of individuals with the diagnosis of Emery-Dreifuss Muscular Dystrophy with specificity of mutation detection in probands detection is also estimated to be greater than 99%.

LIMITATIONS

The sequence analysis will not detect mutations located in regions of EMD, FHL1, LMNA, SYNE1, SYNE2, or TMEM43 that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions. Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Emery-Dreifuss muscular dystrophy (EDMD) is characterized by the clinical triad of joint contractures that begin in early childhood, slowly progressive muscle weakness and wasting initially in a humero-peroneal distribution that later extends to the scapular and pelvic girdle muscles, and cardiac involvement that may manifest as palpitations, presyncope and syncope, poor exercise tolerance, and congestive heart failure. Age of onset, severity, and progression of muscle and cardiac involvement demonstrate both inter- and intrafamilial variability. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. In general, joint contractures appear during the first two decades, followed by muscle weakness and wasting. Cardiac involvement usually occurs after the second decade.

-from GeneReviews

Familial partial lipodystrophy type 1 (FPLD1), or Kobberling-type lipodystrophy, is characterized by loss of adipose tissue confined to the extremities, with normal or increased distribution of fat on the face, neck, and trunk (Kobberling and Dunnigan, 1986). For a general description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660.

-from OMIM

			Specimen Peripheral			Account Number	Phone: 202-555-1 Account Phone Number	Route
Patient Last Name						Patient Barc	code	
Patient First Name Patient Middle Name Priscilla								
		Patient P	hone	Total Volume				
Age (Y/M/D) 32 y.o.	I	Date of Birth	Sex Female	Fasting	1			
		Patient Addre	55		Indication: Famil	lial Partial Lipody	strophy, type 2	
					Family History: N Ethnicity: Wester	No family history rn European Cauc	asian	
Date and Time Colle	te and Time Collected Date Entered Date and Time Reported		Physician Name Jane Ferreiro, MD	NPI	Physicia	n ID		
LMNA Sequenci				Tests	Ordered			

GENE	TEST RESULTS	EXPLANATION
LMNA (1q22)	Arg482 Arg482Trp	This result confirms the diagnosis of Familial Partial Lipodystrophy, type 2. This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed one copy of the Arg482Trp (LMNA g.59412C>T, c.1444C>T or p.Arg482Trp) variation. The Arg482Trp mutation is caused by a C to T change at nucleotide position 159412 in the LMNA gene. This encodes an amino acid at position 482 (tryptophan) that is different from the reference (arginine) and may have implications on structure and or function of the resulting protein.
		This individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.

INDICATIONS FOR TESTING

Individuals with a diagnosis of Hutchinson-Guilford syndrome (HGPS), Congenital muscular dystrophy, LMNA-related (MDCL), or Familial partial lipodystrophy, type 1 (FPLD1) with genetic counseling, are candidates for testing.

METHODOLOGY

Gene sequencing: All coding exons and associated intron junctions are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Gene sequencing: From previous experience, we have been able to detect LMNA mutations in about 99% of individuals with the diagnosis of Hutchinson-Guilford syndrome (HGPS), Congenital muscular dystrophy, LMNA-related (MDCL), or Familial partial lipodystrophy, type 1 (FPLD1) with specificity of mutation detection in probands detection is also estimated to be greater than 99%.

The sequence analysis will not detect mutations located in regions of LMNA that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions. Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Familial partial lipodystrophy type 1 (FPLD1), or Kobberling-type lipodystrophy, is characterized by loss of adipose tissue confined to the extremities, with normal or increased distribution of fat on the face, neck, and trunk (Kobberling and Dunnigan, 1986). For a general description and a discussion of genetic heterogeneity of familial partial lipodystrophy (FPLD), see 151660.

-from OMIM

ClinGen Clinical Testing Laboratory, Inc	Clinical Testing Lab of Washington 2150 Pennsylvania Avenue NW Washington, DC 20037					Phone: 202-555-1212		
Specimen Number		I	Specimen Peripheral		Control Number	Account Number	Account Phone Number	Route
		Patient Last Na	me			Patient Bar	code	
Patient First N Sam			Patient M	iddle Name				
Patient SS#		Patient Pho	one	Total Volume				
Age (Y/M/D) 22 m.o.	Date	of Birth	Sex Male	Fasting				
		Patient Address			Indication: Proge Family History: 1 Ethnicity: Wester	No family history	casian	
Date and Time Collec	Date and Time Collected Date Entered Date and Time Reported		nd Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physician	ID	
Hutchinson-Gilf	ord Proge	ria Syndron	ne (HGPS)		Ordered Gene			
Please send a c	opy of th	e final repo	ort to the		Comments nce/M1 Training offi	ice via Fax at (20)2) 555-1212	

GENE	TEST RESULTS	EXPLANATION
LMNA (1q22)	Gly608 Gly608=	This result confirms the diagnosis of Hutchinson-Gilford Progeria Syndrome (HGPS) . This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has confirmed one copy of the Gly608= (LMNA: g.59412C>T, c.1824C>T or p.Gly608=) variation. The Gly608= mutation is caused by a C to T change at nucleotide position 1824 in the LMNA gene. While this does not result in an altered encoded amino acid (=), it has been reported that the nucleotide variant impacts post-transcriptional processing of the mRNA transcript. The presence of the variant induces the use of a novel/cryptic splice donor site within exon 11 at position 1818. This is ligated directly to the reference splice acceptor site of exon 12, resulting in the deletion of encoded amino acid residues 607 to 656. Furthermore, loss of this protein region has been shown to prevent full post-translational processing (proteolytic cleavage) of the protein.

INDICATIONS FOR TESTING

Individuals with a diagnosis of Hutchinson-Gilford progeria syndrome with genetic counseling, are candidates for testing.

METHODOLOGY

Gene sequencing: All coding exons and associated intron junctions are analyzed by direct DNA sequence analysis using an automated fluorescent sequencing machine. When a mutation is detected, confirmation is carried out on an independent amplification of PCR using a second prep (B-prep) by sequencing in the opposite direction. If no mutation is found, sequence analysis is performed in both directions.

PERFORMANCE

Gene sequencing: From previous experience, we have been able to detect LMNA mutations in about 99% of individuals with the diagnosis of Hutchinson-Gilford progeria syndrome with specificity of mutation detection in probands detection is also estimated to be greater than 99%.

LIMITATIONS

The sequence analysis will not detect mutations located in regions of LMNA that are not analyzed (non-coding exon regions, intron regions other than the splice junctions, and upstream and downstream regions). The sequencing method also will not detect gross genetic alterations including most duplications, inversions, or deletions. Some sequence alterations that may be detected (such as those causing missense or synonymous changes) will be of unknown clinical significance.

CLINICAL DESCRIPTION

Hutchinson-Gilford progeria syndrome encompasses a spectrum of clinical features that typically develop in childhood and resemble some features of accelerated aging. Although signs and symptoms vary in age of onset and severity, they are remarkably consistent overall. Children with Hutchinson-Gilford progeria syndrome (HGPS) usually appear normal at birth. Profound failure to thrive occurs during the first year. Characteristic facies, with receding mandible, narrow nasal bridge and pointed nasal tip develop. During the first to third year the following usually become apparent: partial alopecia progressing to total alopecia, loss of subcutaneous fat, progressive joint contractures, bone changes, nail dystrophy, and abnormal tightness and/or small soft outpouchings of the skin over the abdomen and upper thighs, and delayed primary tooth eruption. Later findings include low-frequency conductive hearing loss, dental crowding, and partial lack of secondary tooth eruption. Additional findings present in some but not all affected individuals include photophobia, excessive ocular tearing, exposure keratitis, and Raynaud phenomenon. Motor and mental development is normal. Death occurs as a result of complications of severe atherosclerosis, either cardiac disease (myocardial infarction) or cerebrovascular disease (stroke), generally between ages six and 20 years. Average life span is approximately 14.6 years.

ClinGen Clinical Testing Laboratory, Inc]	Peripheral	Clinical Testin 2150 Pennsyl Blood Washingt	g Lab of Washington Ivania Avenue NW ton, DC 20037		Phone: 202-555-1	212	
Specimen Number			Specimen Type		Control Number	Account Number	Account Phone Number	Route
Jeff	Jeff Patient Last Name				Patient Barcode			
Patient First Name			Patient M	iddle Name				
46 y.o.		Patient Ph	^{one} Male	Total Volume				
Age (Y/M/D)	Date	of Birth	Sex	Fasting	1			
		Patient Address			Indication: Suspec Family History: N Ethnicity: Wester	o known family hi	tosis story	
Date and Time Collec	ate and Time Collected Date Entered Date and Time Reported		Physician Name Jane Ferreiro, MD	NPI	Physician	n ID		
Hereditary Hem	nochrom	atosis Pan	el	Tests	Ordered			
Please send a co	py of the	final repo	rt to the N		Comments ace/M1 Training office	ce via Fax at (20	2) 555-1212	

Clinical test results for Hereditary hemochromatosis

6 conditions tested:

- Hereditary hemochromatosis (type 1)
- Hemochromatosis type 2A
- Hemochromatosis type 2B

- Hemochromatosis type 3
- Hemochromatosis type 4
- Juvenile hemochromatosis

GENE	TEST RESULTS	EXPLANATION
НАМР	Negative	No known pathogenic variant detected
HFE	Pathogenic p.Cys282Tyr p.Cys282Tyr	This result confirms the diagnosis of or predisposition for Hereditary hemochromatosis (type 1). This result should be interpreted in the context of clinical presentation and results of other laboratory tests (e.g., serum transferrin- iron saturation and serum ferritin).
		A PCR/sequencing study has detected two copies of the Cys282Tyr (HFE g.10633G>A, c.845G>A, p.Cys282Tyr) variation. The Cys282Tyr mutation is a G to A change at nucleotide position 10633 in the HFE gene, 845 in the primary HFE transcript and results in a change from cysteine to tyrosine at amino acid position 282.
		In addition, this individual's result has important implications for other family members. Clinical and laboratory evaluations should be considered for at risk individuals. Genetic counseling is recommended for at risk individuals.
HFE2	Negative	No known pathogenic variant detected
SLC40A1	Negative	No known pathogenic variant detected
TFR2	Negative	No known pathogenic variant detected

DISCLAIMER:

Test results should be interpreted in context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete. Rare polymorphisms exist that could lead to false negative or positive results. If results obtained do not match the clinical findings, additional testing should be considered.

ASSAY METHODS

Full-Gene Sequencing covers the full gene coding sequence, +/- 10 base pairs of adjacent intronic sequence, and other non-coding sequence positions containing select known pathogenic variants. Deletion/Duplication Analysis detects most intragenic deletions and duplications at single exon resolution. Rarely however, single-exon duplication events may be missed due to inherent sequence properties or isolated reduction in data quality.

CLINICAL DESCRIPTION

HFE-associated hereditary hemochromatosis (HFE-HH) is characterized by inappropriately high absorption of iron by the gastrointestinal mucosa. The phenotypic spectrum of HFE-HH is now recognized to include Those with clinical HFE-HH, in which manifestations of end-organ damage secondary to iron storage are present; Those with biochemical HFE-HH, in which the only evidence of iron overload is increased transferrin-iron saturation and increased serum ferritin concentration; and Non-expressing p.Cys282Tyr homozygotes in whom neither clinical manifestations of HFE-HH nor iron overload are present. Clinical HFE-HH is characterized by excessive storage of iron in the liver, skin, pancreas, heart, joints, and testes. In untreated individuals: early symptoms may include abdominal pain, weakness, lethargy, and weight loss; the risk of cirrhosis is significantly increased when the serum ferritin is higher than 1,000 ng/mL; other findings may include progressive increase in skin pigmentation, diabetes mellitus, congestive heart failure and/or arrhythmias, arthritis, and hypogonadism. Clinical HFE-HH is more common in men than women.

- Rochette J, et al. Factors influencing disease phenotype and penetrance in HFE haemochromatosis. Human Genetics.2010;128(3):233–248.
- Whitlock EP, Garlitz BA, Harris EL, et al. Screening for hereditary hemochromatosis: a systematic review for the U.S. preventive services task force. Annals of Internal Medicine. 2006;145(3):209–223.
- Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the study of liver diseases. Hepatology. 2011;54(1):328–343.

ClinGen Clinical Testing Laboratory, Inc				55492 Sprin	ng Lab of California g Street, Suite 201 CA 94078-9932		Phone: 510-555-12	212	
Specimen Num	Specimen Number Patien			Patient ID Control Number Acco		Account Number	Account Phone Number	Route	
	Patient Last Name				Account Address				
Patient First N Trace	Patient First Name Patient Middle Name Tracey								
Patient SS#		Patient Ph	one	Total Volume					
Age (Y/M/D) 42 y.o.	Date	e of Birth	Sex Female	Fasting					
		Patient Address	ŝ		Specimen Type: Per Ethnicity: African Indication: Possible	American	ormation		
Date and Time Collec	Date and Time Collected Date Entered Date and Time Reporte		nd Time Reported	Physician Name Jane Ferreiro, MD	NPI	Physician	ID		
Malignant Hyp	ertherm	ia Suscept	ibility Seq	uencing Panel	Ordered				
Please send a co	opy of th	e final repo	ort to the N		Comments ence/M1 Training off	ïce via Fax at (2	02) 555-1212		

Clinical test results for Malignant Hyperthermia Susceptibility

5 conditions tested:

- Malignant Hyperthermia Susceptibility, type 1
- Malignant Hyperthermia Susceptibility, type 5
- Central Core Disease

- Minicore Myopathy with External Opthalmoplegia
- Native American Myopathy

GENE	TEST RESULTS	EXPLANATION
CACNA1S	Negative	No known pathogenic variant detected
RYR1	L4824P L4824P	This result confirms the susceptibility for Malignant Hyperthermia type 1 . This result should be interpreted in the context of clinical presentation and results of other laboratory tests.
		A PCR/sequencing study has detected two copies of the NM_000540.2(RYR1):c.14471T>C (p.Leu4824Pro) variation. The L4824P mutation is encoded by a T to C change at nucleotide position 14471 in the RYR1 mRNA and results in a change from leucine to proline at amino acid position 4824 in the protein.
		In addition, this individual's result has important implications for other family members. Clinical evaluations should be considered and genetic counseling is recommended for at-risk individuals.
STAC3	Negative	No known pathogenic variant detected

DISCLAIMER:

Test results should be interpreted in context of clinical findings, family history, and other laboratory data.

Misinterpretation of results may occur if the information provided is inaccurate or incomplete. Rare polymorphisms exist that could lead to false negative or positive results. If results obtained do not match the clinical findings, additional testing should be considered.

NGS method: We use a combination of Next Generation Sequencing (NGS) and Sanger sequencing technologies to cover the full coding regions of the listed genes plus ~20 bases of non-coding DNA flanking each exon. As required, genomic DNA is extracted from the patient specimen. For NGS, patient DNA corresponding to these regions is captured using an optimized set of DNA hybridization probes. Captured DNA is sequenced using Illumina's Reversible Dye Terminator (RDT) platform (Illumina, San Diego, CA, USA). Regions with insufficient coverage by NGS are covered by Sanger sequencing. All pathogenic, likely pathogenic, or variants of uncertain significance are confirmed by Sanger sequencing. aCGH method: As required, DNA is extracted from the patient specimen. Equal amounts of genomic DNA from the patient and a gender matched reference sample are amplified and labeled with Cy3 and Cy5 dyes, respectively. To prevent any sample cross contamination, a unique sample tracking control is added into each patient sample. Each labeled patient product is then purified, quantified, and combined with the same amount of reference product. The combined sample is loaded onto the designed array and hybridized for at least 22-42 hours at 65°C. Arrays are then washed and scanned immediately with 2.5 μ M resolution. Only data for the gene(s) of interest for each patient are extracted and analyzed. If you would like to order a subset of these genes contact us to discuss pricing.

CLINICAL DESCRIPTION

Malignant hyperthermia is characterized by a rapid increase in temperature to 39-42 degrees C in response to inhalational anesthetics such as halothane or to muscle relaxants such as succinylcholine. [from HPO]