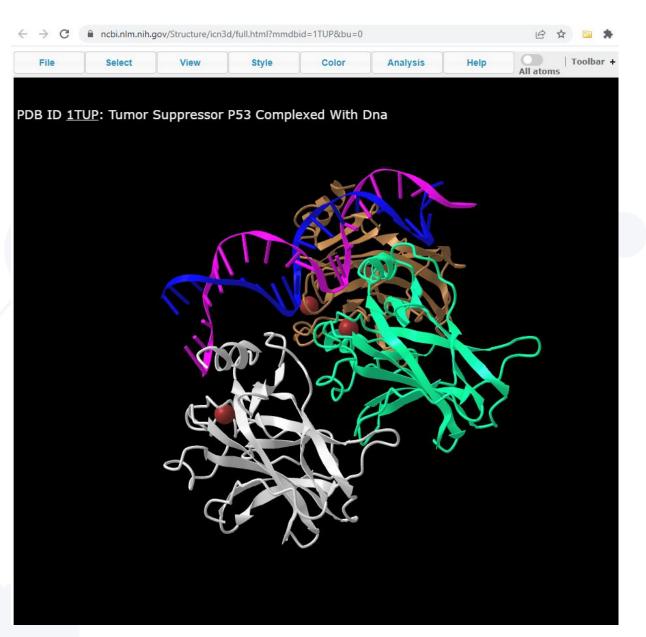
Exploring 3D Molecular Structures with iCn3D Alexa M. Salsbury, Ph.D.



Overview

- Background
- iCn3D Fundamentals
 - Selection
 - Coloring
 - Style
- Individual work & office hours

National Library of Medicine National Center for Biotechnology Information

https://www.nlm.nih.gov/ncbi/workshops/ASBCB_2023-04_3dmolecular-structures/workshop_details.html

Structural Biology

1952-1953- Pioneering DNA

structure work by Wilkins,

Franklin, Watson, & Crick.

Now- over 175,000

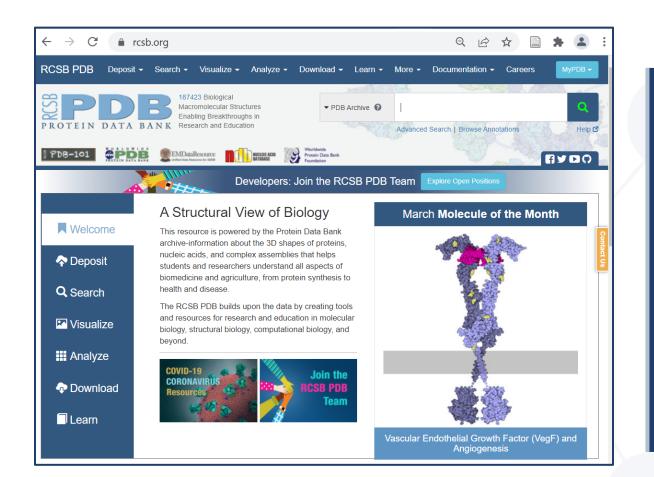
structures are publicly available and structure prediction is improving! 1956-1960- Rich & Davies'

structural experiments showed

how information could be

transferred from DNA to RNA.

1957- The first protein with a crystal structure was solved in by Kendrew and co-workers



Experimental techniques

	Advantages	Disadvantages
X-ray crystallography	 Well developed High resolution Broad molecular weight range 	 Difficult sample prep Static crystalline state
NMR	 High resolution 3D structure in solution Good for dynamic study 	 Difficult sample prep High sample purity needed Static crystalline state captured
Cryo-EM	 Simple sample prep Structure in native state Small sample size needed 	 Lower resolution Works best for samples with high molecular weight Equipment can be expensive, but costs are decreasing

Where do I find experimentally determined structures?

RCSB Protein Data Bank

\leftrightarrow \rightarrow C $rightarrow$ ncbi.nlm.nih.gov/structure/						
S NCBI Resources ⊡ How To ⊡ Sign in to NCBI						
Structure Structure Advanced						
	Structure					
	Three dimensional structures provide a wealth of information on the biological function and the evolutionary history of macromolecules. They can be used to examine sequence-structure-function relationships, interactions, active sites, and more.					
Using Structure	Structure Tools	More Resources				
Search	Macromolecular Resources Overview	PDB				
How to (Quick Start) Guides	iCn3D (web-based 3D viewer)	Protein				
Help	Cn3D (3D viewer application)	CDD				
News	IBIS	PubChem				
FTP	VAST	NCBI Structure Group Resources &				
Publications	<u>VAST+</u>	Research				
Discover						

NCBI Structure Database

Protein Data Bank (PDB)

- New Structures are deposited daily
- Each structure contains:
- 3D atomic coordinates
- Mandatory Metadata
 - Author Information
 - Primary citation
 - Experimental Data
 - Polymer sequence(s)- proteins, DNA, RNA
 - Small Chemical component structures- ligands, inhibitors, etc.

6LU7

The crystal structure of COVID-19 main protease in complex with an inhibitor N3

DOI: 10.2210/pdb6LU7/pdb

Classification: VIRAL PROTEIN

Organism(s): Severe acute respiratory syndrome coronavirus 2, synthetic construct Expression System: Escherichia coli BL21(DE3) Mutation(s): No ④

Deposited: 2020-01-26 Released: 2020-02-05 Deposition Author(s): Liu, X., Zhang, B., Jin, Z., Yang, H., Rao, Z.

Experimental Data Snapshot Method: X-RAY DIFFRACTION Resolution: 2.16 Å R-Value Free: 0.235 R-Value Work: 0.202 R-Value Observed: 0.204

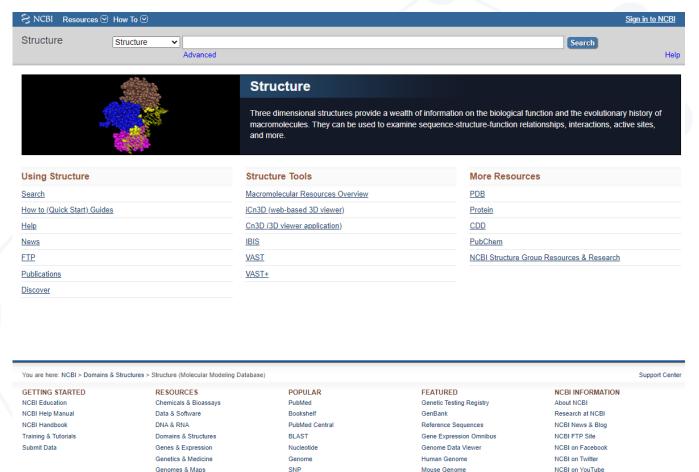
Literature

Structure of Mprofrom SARS-CoV-2 and discovery of its inhibitors.

<u>Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L.W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., Yang, H.</u> (2020) Nature **582**: 289-293

PubMed: <u>32272481</u> Search on PubMed DOI: 10.1038/s41586-020-2223-y Primary Citation of Related Structures: 7BQY, 6LU7

PubMed Abstract:


A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19) ¹⁻⁴. Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited ...•

Download Primary Citation -

NCBI's Structure Database

- Updated monthly
- Derived from PDB records
- Additional information added, including:
 - Explicit chemical graph information
 - Validation (secondary structure elements)
 - Includes taxonomy
- Connects 3D to associated literature, molecular data, chemical data, and other NCBI tools

Influenza Virus

Primer-BLAST

Sequence Read Archive

Privacy Policy

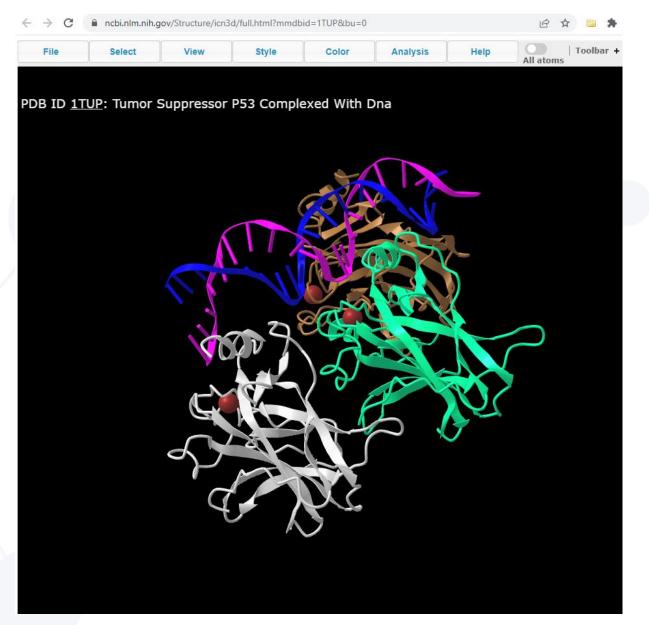
Gene

Protein

PubChem

Homolog

Literature


Proteins

Sequence Analysis Taxonomy Variation

iCn3D

- Interactive, web-based 3D structure viewer
 - No installation needed!
- Users can
 - Visualize structure in 1D, 2D, and 3D
 - View sequence and structure alignments
 - Probe perturbations
 - And more!

3D Viewer Feature Comparison

	Web-	1D	2D	Annotation	Align	Share	Script	Jupyter	Virtual	3D
	based	Sequence	Diagram			Link		Notebook	Reality	Printing
iCn3D	\checkmark	\checkmark	\checkmark	\checkmark	√a	√b	√c	√d	\checkmark	\checkmark
Mol*	\checkmark	\checkmark	Web	Web						
Aquaria	\checkmark	\checkmark		\checkmark					\checkmark	
Chimera		\checkmark		\checkmark					\checkmark	\checkmark
PyMol		\checkmark		\checkmark			\checkmark			
Cn3D		\checkmark	Web	\checkmark	\checkmark					

^a: iCn3D aligns structures (PDB or AlphaFold) based on structures or sequences.

^b: iCn3D sharable links could be a <u>short URL</u> or a URL containing the <u>address of an iCn3D PNG Image</u>

^c: iCn3D supports command-line analysis with either <u>Python scripts</u> or <u>Node.js scripts</u>

^d: iCn3D can also be <u>used in Jupyter Notebook</u>

iCn3D Features of Interest

- iCn3D aligns structures (PDB or AlphaFold) based on structures or sequences.
- iCn3D sharable links (<u>https://structure.ncbi.nlm.nih.gov/icn3d/share.html?XCxR6fSTmXHxR3o1A</u>)
- iCn3D supports command-line analysis with either <u>Python scripts</u> or <u>Node.js scripts</u>
- iCn3D can also be used in Jupyter Notebook (<u>https://pypi.org/project/icn3dpy</u>)
- 3D printing: <u>structure.ncbi.nlm.nih.gov/icn3d/share.html?wt4TDqzhC2rhCYTD7</u>
- Contact map: <u>structure.ncbi.nlm.nih.gov/icn3d/share.html?rnMbe26tNsAjJLGK9</u>
- Precalculated symmetry: structure.ncbi.nlm.nih.gov/icn3d/share.html?bGH1BfLsiGFhhTDn8
- Symmetry dynamically: structure.ncbi.nlm.nih.gov/icn3d/share.html?6NvhQ45XrnbuXyGe6
- Electron density map: <u>structure.ncbi.nlm.nih.gov/icn3d/share.html?QpqNZ3k65ToYFvUB6</u>
- EM map: structure.ncbi.nlm.nih.gov/icn3d/share.html?L4C4WYE85tYRiFeK7
- Transmembrane protein: structure.ncbi.nlm.nih.gov/icn3d/share.html?jMN16mJyR9STUx6E6
- Solvent Accessible Area: structure.ncbi.nlm.nih.gov/icn3d/share.html?xKSyfd1umbKstGh29

iCn3D Fundamentals Demo

https://www.nlm.nih.gov/ncbi/workshops/ASBCB_2023-04_3dmolecular-structures/icn3d_fundamentals.html

Codeathon Exercise

https://www.nlm.nih.gov/ncbi/workshops/ASBCB_2023-04_3dmolecular-structures/codeathon_exercise.html

Continue learning about iCn3D

Tutorials and help documents are available here:

Cn3D		Menu			
phaFold-related gallery with		About iCn3D Live Gallery Tutorial > Search Structure	Use iCn3D iCn3D Videos		
ot ID <u>A0A044R7Z7</u> : ALPHAFOLD MONOMER V2	Sequences and Annotations Summary Details Annotations:	Citing iCn3D Source Code > Develop > Help Doc	URL Parameters Commands	Fold UniProt ID Q08426: ALPHAFOLD MONOMER V	Sequences and Annotations Image: Im
	ABA5448777 A P53 176 Residues 30 dom 30 domain 2 209 Residues	ert Setz) [Cott Setz] 479 120 Hosekues Residues	Very Nigh (pLDDT > 00) Confident (90 > pLDDT > 70) Low (70 > pLDDT > 50) Very low (pLDDT < 50)	Annotations of Q08426_A: Add Track Custom Cdor/Tube 51 10 52 Protein Q18426_A 1 MA E Y TILLINA LA LIR LIR demain: fad/ 058 Res 6 6 Cinitian Canter S 8 6 6 Yes Cinitian Canter S 8 6 6 6 SNP 282 Res 6 <	

NIH

Continue learning about NCBI Resources

 Join us for workshops, webinars, or codeathons!

NCBI Insights Blog

Follow us on social media:

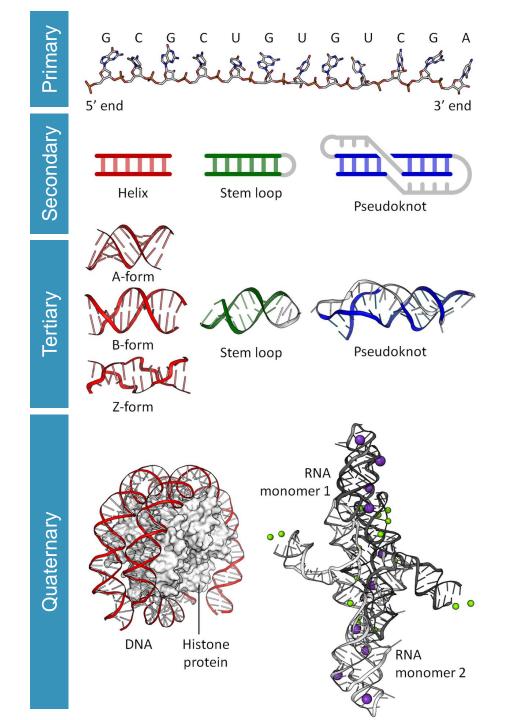
Twitter LinkedIn **Facebook**

Home > NCBI Outreach Events:	My NCBI Password Retirement Details Frequently Asked Questions My NCBI Login Transition Tips		
NCBI Outre Webinars, a			
What's New? We have expanded our outrea workshops, and codeathons.	ach offerings and invite you to ap	ply to attend our webinars,	Follow NCBI NCBI Home NCBI Datasets
Search Upcoming			NCBI News Archive
Search and apply for upcoming I	NCBI webinars, workshops, codeath	ons, and other outreach activities.	NCBI ListServes & RSS Feeds
Keywords	Location	Select Date Range	NCBI Outreach Events: Workshops, Webinars and Codeathons
Select Some Options	Select Some	Options	About This Blog
Events		=	Subscribe
24 MAR VIRTUAL	05 APR	12 APR VIRTUAL	RSS - Posts Archives
Lawn How to Report Public Learny My Bibliography		Learn How to Report Public Learn How to Report Public Learn My Bibliography	Select Month
Learn How to	Exploring 3D	Learn How to	
Report Your	Molecular	Report Your	
③ 2022-03-24 @ 01:00 PM - 2022-03-24 @ 02:30 PM	O 2022-04-05 @ 01:00 PM - 2022-04-05 @ 04:00 PM	Q 2022-04-12 @ 01:00 PM - 2022-04-12 @ 02:30 PM	
Online Event	Online Event	Online Event	
NCBI Workshop	NCBI Workshop	NCBI Workshop	

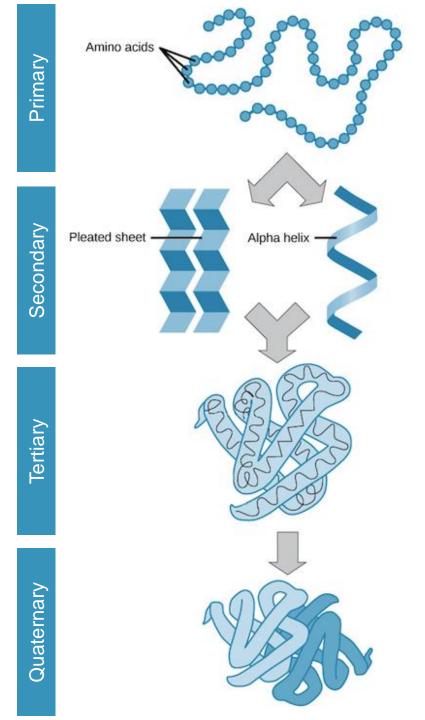
Questions & Discussion

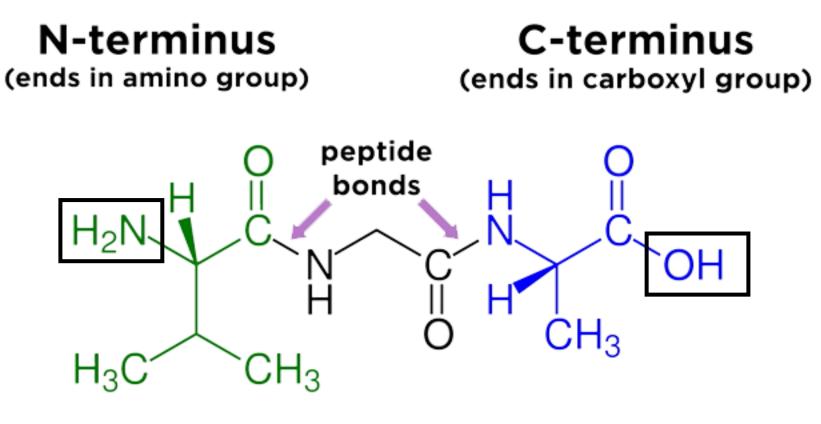
National Library of Medicine National Center for Biotechnology Information

Exploring 3D Molecular Structures with iCn3D Supplemental Learning Materials


Alexa M. Salsbury, Ph.D.

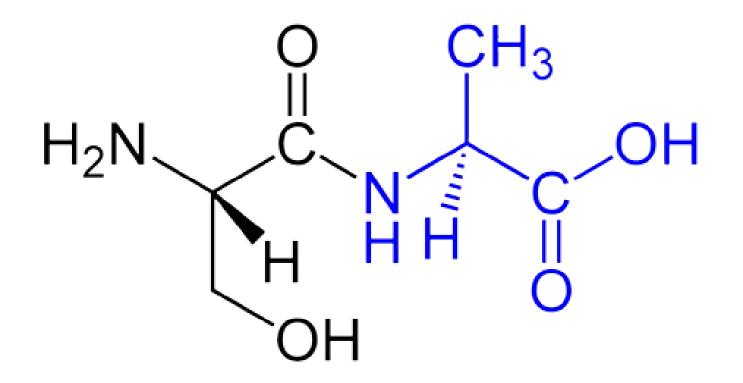
Nucleic Acid Structure

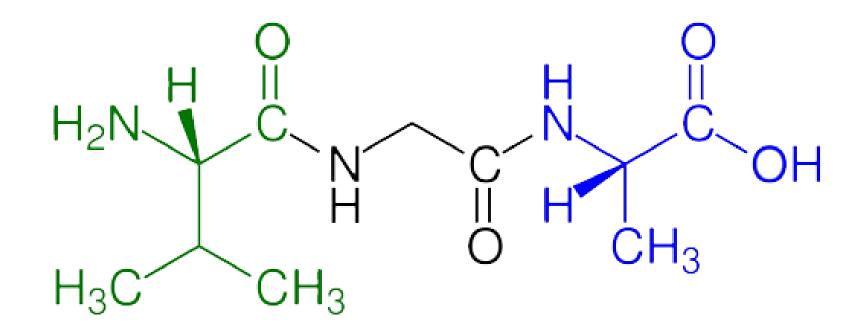

- Primary- sequence of nucleotides
- Secondary- base pairing interactions between polymers (DNA) or within a single polymer (RNA)
- Tertiary- 3D folding pattern
- Quaternary- interactions of nucleic acids with other molecules (DNA, RNA, or Protein)



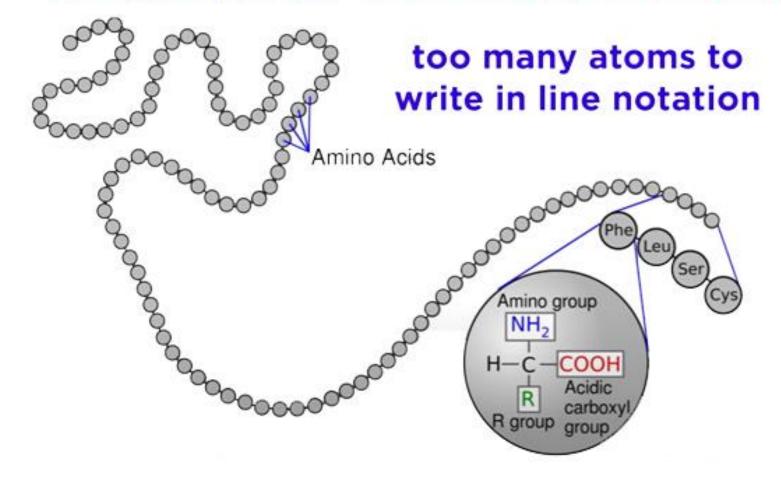
Protein Structure

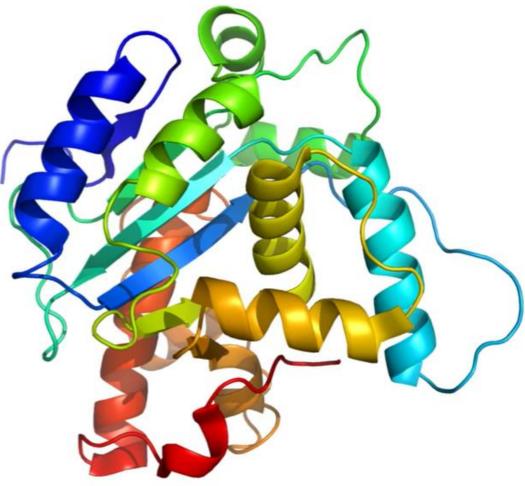
- Primary- sequence of amino acids
- Secondary- hydrogen bonding of the peptide backbone that causes amino acids to fold into a repeating pattern
- **Tertiary-** 3D folding pattern of a protein due to side chain interactions
- Quaternary- protein consisting of more than one polypeptide

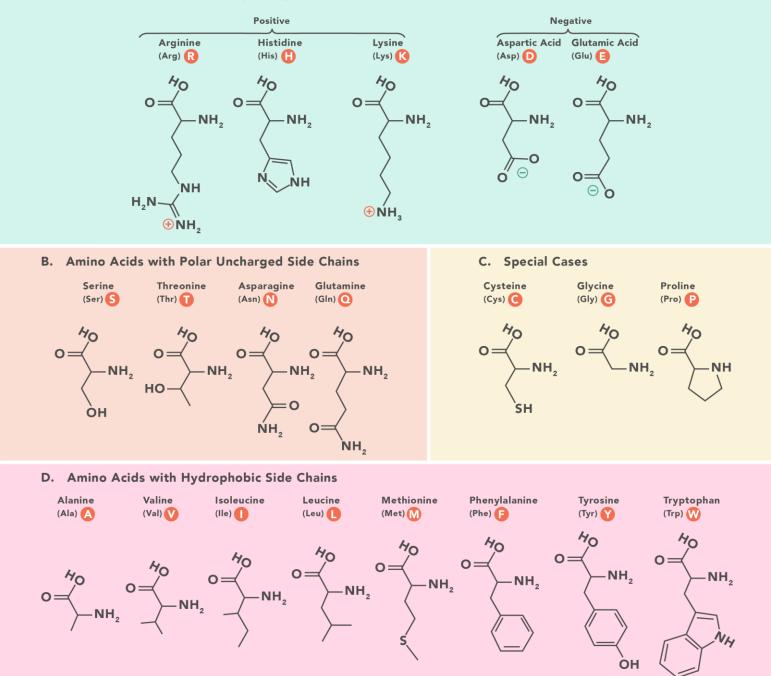




valine-glycine-alanine


dipeptide (2 amino acids)


oligopeptide (3-10 amino acids)


polypeptide (>10 amino acids)

protein (generally 300-1000 amino acids)

A. Amino Acids with Electrically Charged Side Chains

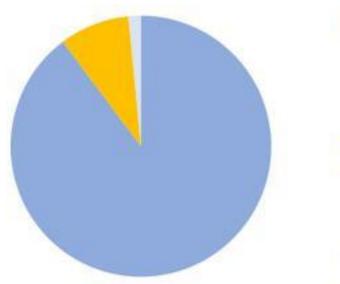
Functional definition:

Enzymes: Accelerate biochemical reactions

- Structural: Form biological structures
- Transport: Carry biochemically important substances
- Defense: Protect the body from foreign invaders

Structural definition:

- Globular: Complex folds, irregularly shaped tertiary structures
- Fibrous: Extended, simple folds -- generally structural proteins


Cellular localization definition:

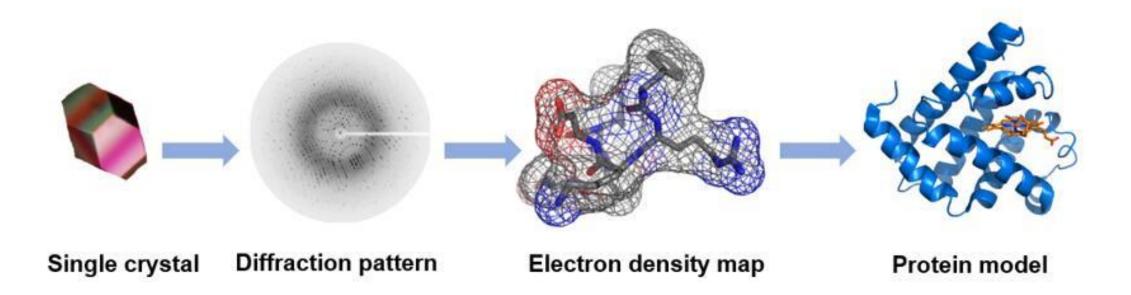
Membrane: In direct physical contact with a membrane; generally water insoluble.

Soluble: Water soluble; can be anywhere in the cell

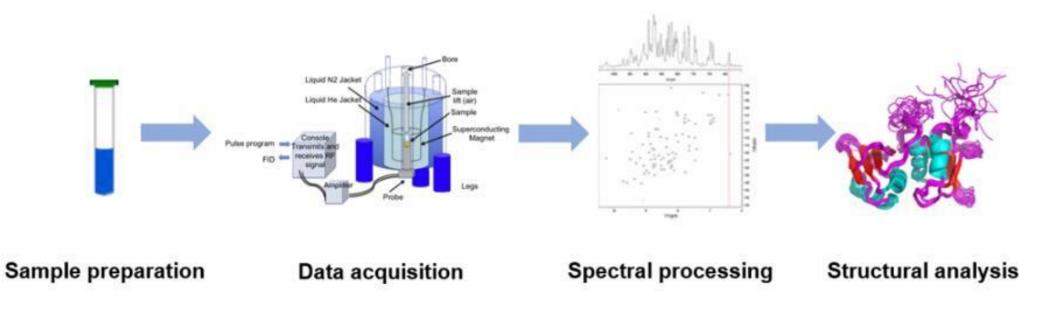
Experimental techniques

Single crystal X-ray diffraction (SC-XRD)

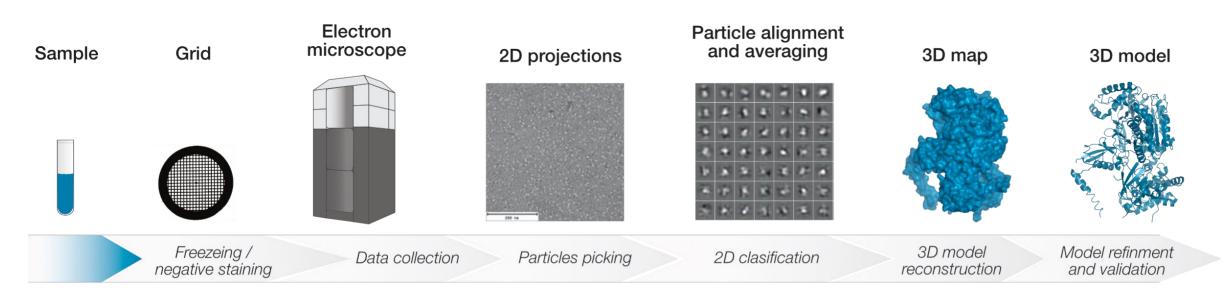
Nuclear magnetic resonance (NMR)


Cryo-electron microscopy (Cryo-EM)

Three main research techniques for structural biology. According to the statistics of PDB (<u>https://www.rcsb.org/</u>)


X-ray Crystallography

- Requires crystals, which can be hard to make
- Can handle very large proteins and complexes (e.g. ribosome)
- Provides a "flash picture" with little or no data about motions
- Can include packing artifacts from crystallization


Nuclear Magnetic Resonance

- Requires highly concentrated, C13/N15-labeled protein solutions
- Limited to relatively small proteins (<30 kDa)
- Sensitive to molecular motions
- High protein concentrations may induce non-biological binding

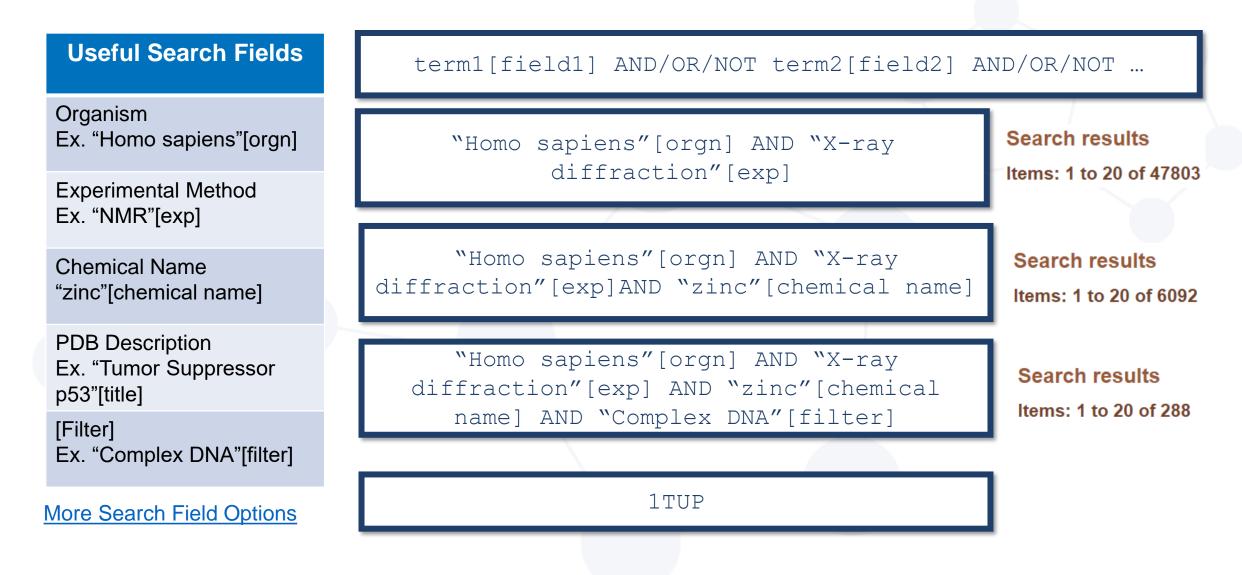
Cryo-electron microscopy

- Requires expensive equipment
- Only small amount of sample
- Rapid freezing sample allows sample to maintain a closer-tonative state
- Useful for biomolecules with high molecular weight

NCBI Structure Database Search Tips

Entrez is a molecular biology database system that provides access to a wealth of NCBI data

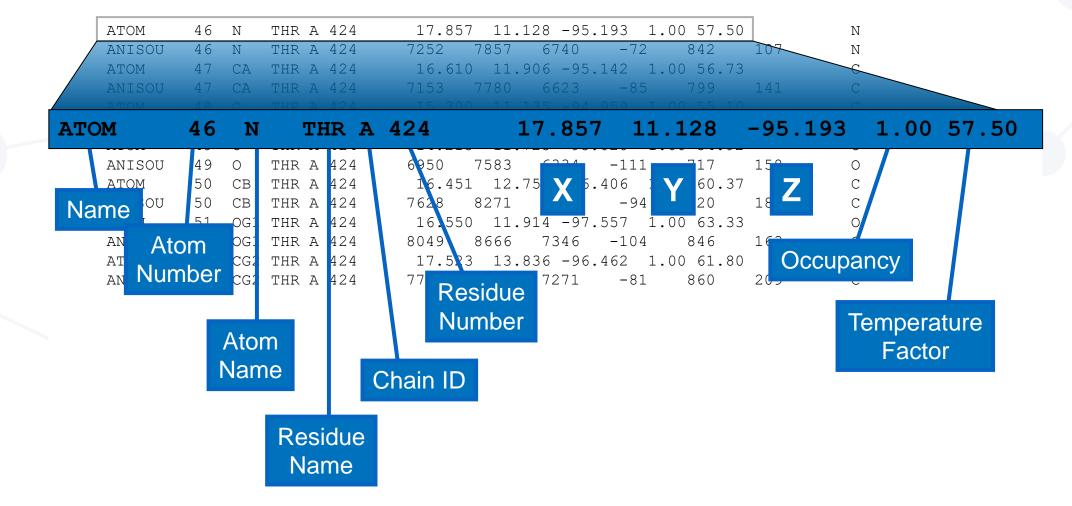
More Entrez Help is available on the NCBI website


Finding structures with Entrez

"term1"[field1] AND/OR/NOT "term2"[field2] AND/OR/NOT ...

- Use field limits and Boolean operators
- Put phrases in quotes

NCBI Structure Database Search Examples


National Library of Medicine National Center for Biotechnology Information

PDB File

	HEADER	ISOMERA	SE/DNA	04-OCT-07 2RGR	
	TITLE	TOPOISO	MERASE IIA	BOUND TO G-SEGMENT DNA	
	COMPND	MOL ID:	1;		
	COMPND	2 MOLECU	LE: DNA TOP	DISOMERASE 2;	
	COMPND	3 CHAIN:	A;		
	COMPND	4 FRAGME	NT: DNA BIN	DING AND CLEAVAGE DOMAIN (RESIDUES 419-	
	COMPND	5 1177);			
	COMPND	6 SYNONY	M: DNA TOPO	ISOMERASE II;	
	COMPND	7 EC: 5.	99.1.3;		
	COMPND	8 ENGINE	ERED: YES;		
	COMPND	9 MOL_ID	: 2;		
	COMPND	10 MOLECU	LE: DNA;		
	COMPND	11 CHAIN:	С;		
	COMPND	12 ENGINE	ERED: YES;		
	COMPND	13 MOL_ID	: 3;		
	COMPND	14 MOLECU	LE: DNA;		
	COMPND	15 CHAIN:	D;		
	COMPND	16 ENGINE	ERED: YES		
	SOURCE	MOL_ID:	1;		
	SOURCE	2 ORGANI	SM_SCIENTIF	IC: SACCHAROMYCES CEREVISIAE;	
	SOURCE	3 ORGANI	SM_COMMON:	BAKER'S YEAST;	
	SOURCE	4 ORGANI	REMARK 2		
	SOURCE	J GENE:		RESOLUTION. 3.00 ANGSTROMS.	
	SOURCE	6 EXPRES	כ עת גאים ס		
	SOURCE	7 EXPRES	REMARK 3	REFINEMENT.	
	SOURCE	8 EXPRES	REMARK 3	PROGRAM : PHENIX	
		9 EXPRES			
	SOURCE	10 EXPRES	 REMARK 280		
	SOURCE	II EXPRES	REMARK 280	CRYSTAL	
	SOURCE	IZ MOL_ID	REMARK 280	SOLVENT CONTENT, VS (%): 59.90	
	SOURCE	TO DINIH	REMARK 280	MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): 3.07	
		IA MOL_ID	REMARK 280		
	SOURCE	15 SYNTHE	REMARK 280	CRYSTALLIZATION CONDITIONS: 12-20% PEG 1000, 100-250 MM MC	GCL2,
			REMARK 280		
Medi			REMARK 280	DROP, TEMPERATURE 277K	
			REMARK 290		

NIH National Library of N National Center for Biotechnology

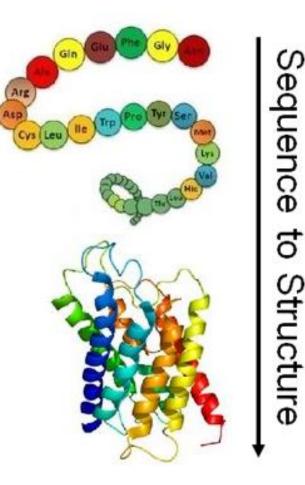
PDB File: Data

More about PDB Data

Computational Structural Biology

- Structure Prediction- inference of 3D structure from sequence data
- Molecular Docking- predicts the orientation of one molecule to another
- Molecular Dynamics Simulations- analyzes physical movements of atoms and molecules over time

Computational Structural Biology


- Structure Prediction- inference of 3D structure from sequence data
- Molecular Docking- predicts the orientation of one molecule to another
- Molecular Dynamics Simulations- analyzes physical movements of atoms and molecules over time

- Rely on experimental information from public databases
 - NCBI Databases and RCSB Protein Data Bank

Structure Prediction Methods

- Comparative Modeling
 - Prediction is based on amino acid sequence and structures of similar molecules available
- Fold recognition
 - Predicts folded structure by aligning a protein of unknown structure and a protein of known structure for low levels of sequence identity (<25%)
- Ab initio
 - Predicts the structure of proteins from the sequence and using molecular energy calculations (Schrodinger equation)

Structure Prediction Example

Impact on COVID-19 research

- Researchers have provided key insights into the SARS-CoV-2 proteins through structure prediction
 - Identified critical residues
 - Contextualized variant perturbations
 - Improved understanding of molecular recognition
- Spike fusion glycoprotein example
 - Challenging to characterize experimentally
 - Modeling + molecular dynamics helped researchers understand the roles of glycans on the dynamics of the protein

Casalino et al, *Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein*, PMID:33140034

Homology Modeling vs Ab initio Prediction

Ab initio Prediction	Comparative Modeling
Applicable to any sequence	Applicable to only those sequences with recognizable similarity to a template structure
Not very accurate (>4Å RMSD)	Fairly accurate (<3Å RMSD), similar to low resolution X-ray structure
Attempted for proteins of <100 residues	Not limited by size
Accuracy and applicability are limited by our understanding of the protein folding problem	Accuracy and applicability are limited by the number of known folds

Quick Background to AlphaFold

Learn more about AlphaFold here

National Library of Medicine National Center for Biotechnology Information